The mammalian decidual cell evolved from a cellular stress response.

PLoS Biol

Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America.

Published: August 2018

Among animal species, cell types vary greatly in terms of number and kind. The number of cell types found within an organism differs considerably between species, and cell type diversity is a significant contributor to differences in organismal structure and function. These observations suggest that cell type origination is a significant source of evolutionary novelty. The molecular mechanisms that result in the evolution of novel cell types, however, are poorly understood. Here, we show that a novel cell type of eutherians mammals, the decidual stromal cell (DSC), evolved by rewiring an ancestral cellular stress response. We isolated the precursor cell type of DSCs, endometrial stromal fibroblasts (ESFs), from the opossum Monodelphis domestica. We show that, in opossum ESFs, the majority of decidual core regulatory genes respond to decidualizing signals but do not regulate decidual effector genes. Rather, in opossum ESFs, decidual transcription factors function in apoptotic and oxidative stress response. We propose that rewiring of cellular stress responses was an important mechanism for the evolution of the eutherian decidual cell type.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108454PMC
http://dx.doi.org/10.1371/journal.pbio.2005594DOI Listing

Publication Analysis

Top Keywords

cell type
20
cellular stress
12
stress response
12
cell types
12
cell
10
decidual cell
8
species cell
8
novel cell
8
opossum esfs
8
type
5

Similar Publications

Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.

View Article and Find Full Text PDF

Anaplastic Thyroid Cancer (ATC) is an aggressive form of cancer with poor prognosis, heavily influenced by its tumor immune microenvironment (TIME). Understanding the cellular and gene expression dynamics within the TIME is crucial for developing targeted therapies. This study analyzes the immune microenvironment of ATC and Papillary Thyroid Cancer (PTC) using single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

Ferroptosis is a classic type of programmed cell death characterized by iron dependence, which is closely associated with many diseases such as cancer, intestinal ischemic diseases, and nervous system diseases. Transferrin (Tf) is responsible for ferric-ion delivery owing to its natural Fe binding ability and plays a crucial role in ferroptosis. However, Tf is not considered as a classic druggable target for ferroptosis-associated diseases since systemic perturbation of Tf would dramatically disrupt blood iron homeostasis.

View Article and Find Full Text PDF

The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.

View Article and Find Full Text PDF

Xanthohumol attenuates TXNIP-mediated renal tubular injury in vitro and in vivo diabetic models.

J Nat Med

January 2025

Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China.

Thioredoxin-interacting protein (TXNIP), as a pivotal protein in the cellular stress response, plays a significant role in the progression of diabetic nephropathy (DN). Consequently, therapeutic strategies aimed at targeting TXNIP may offer novel interventions for patients with DN. Our study is to explore the therapeutic potential of targeting TXNIP in mitigating renal tubular injury induced by hyperglycemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!