Current magnetic resonance imaging (MRI)-guided pH-switching therapeutic platforms have encountered problems such as low relaxation rates, poor pH-switching efficiencies, and a lag in the drug release behind the MRI. Herein, we designed a nanoplatform with tunable pore size, which could match the size of drug molecules for pH-switching MRI and chemotherapy via ultrasmall manganese oxide-capped mesoporous silica nanoparticles (USMO@MSNs). USMO@MSN could quickly dissolve under weakly acidic conditions and leach abundant Mn ions (leaching ratio: 76%), enhancing the MR contrast. The longitudinal relaxation rate ( r) of USMO@MSNs significantly increased from 0.65 to 5.61 mM s as the pH decreased from 7.4 to 4.5, showing an ultrahigh-efficiency pH-switching T-weighted MR contrast ability for in vivo tumor. Meanwhile, the matching pore structure allowed effective loading of doxorubicin (DOX) on USMO@MSNs to form smart therapeutic system (USMO@MSNs-DOX). The DOX release rate was strongly proportional to the pH-switching MRI signal of USMO@MSNs-DOX, allowing the release of DOX to be efficiently monitored by MRI. Confocal observations indicated that USMO@MSNs-DOX could be effectively internalized by HSC3 cells, and the entire system showed a good pH-switching theranostic performance for HSC3 cells. Therefore, this simple pH-switching system provides a new avenue for timely cancer diagnosis and personalized therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b11408 | DOI Listing |
JCO Clin Cancer Inform
January 2025
Machine Learning Department, H. Lee Moffit Cancer Center and Research Institute, Tampa, FL.
Purpose: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evaluated whether an auxiliary data set could improve prediction performance.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
January 2025
Hospital Universitario HM Montepríncipe, HM Hospitales. Facultad HM. Hospitales de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain.
PLoS One
January 2025
Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
Purpose: Treatment of peripheral artery disease (PAD) in the region below the knee (BTK) is dissatisfying as failure of treated target lesions (TLF) is frequent and diagnostic imaging is often challenging. In the BTK-region metallic drug-eluting stents (mDES) yielded best results concerning primary patency (PP), but also annihilate signal in magnetic resonance angiography (MR-A). A recently introduced non-metallic drug eluting bioresorbable Tyrocore® vascular scaffold (deBVS), that offers an option for re-treatment of lesions due to its full degradation within 3-4 years after placement, was investigated with respect to its compatibility with MR-A to unimpededly depict previously treated target lesions.
View Article and Find Full Text PDFJBJS Case Connect
January 2025
Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut.
Case: A 16-year-old woman presented with acute on chronic knee pain and instability following a twisting injury. The tibial insertion of the anterior cruciate ligament (ACL) was nonvisualized on magnetic resonance imaging. A cord-like ACL, originating from the lateral intercondylar notch and inserting smoothly into the anterior horn of the intact lateral meniscus, was found on arthroscopy.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Genes on the X chromosome are extensively expressed in the human brain. However, little is known for the X chromosome's impact on the brain anatomy, microstructure, and functional networks. We examined 1045 complex brain imaging traits from 38,529 participants in the UK Biobank.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!