The interfacial mechanics of soft elastic networks plays a central role in biological and technological contexts. Yet, effects of solid capillarity have remained controversial, primarily due to the strain-dependent surface energy. Here we derive the equations that govern the selection of contact angles of liquid drops on elastic surfaces from variational principles. It is found that the substrate's elasticity imposes a nontrivial condition that relates pinning, hysteresis, and contact line mobility to the so-called Shuttleworth effect. We experimentally validate our theory for droplets on a silicone gel, revealing an enhanced contact line mobility when stretching the substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.121.068003 | DOI Listing |
Langmuir
January 2025
College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
LiFeMnPO (0 < < 1) has a high operating voltage range and theoretical energy density, but its actual capacity decreased due to its low electronic conductivity. To overcome this problem, we successfully prepared LiFeMnPO/C (LFMP/C) with a uniform carbon coating by a one-step solvothermal method using bamboo shavings as the carbon source. The results showed that heating at a reaction temperature of 180 °C for 18 h was the optimal synthesis condition to obtain LFMP/C.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
Electroluminescent (EL) devices consisting of a single metal-semiconductor contact and a gate effect structure have garnered significant attention in the field of perovskite light-emitting devices. This interest is largely due to the thermal stability of the active layer and the simplicity of the device structure. However, the application of these devices in large-area light-emitting applications is hindered by the inherently low carrier mobility in perovskite materials.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.
This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.
View Article and Find Full Text PDFSensors (Basel)
January 2025
German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany.
Instrumented gait analysis is widely used in clinical settings for the early detection of neurological disorders, monitoring disease progression, and evaluating fall risk. However, the gold-standard marker-based 3D motion analysis is limited by high time and personnel demands. Advances in computer vision now enable markerless whole-body tracking with high accuracy.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemical Technology, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.
The reaction mechanism of soot oxidation on Mn (MnO), Mn-Ce (MnO-CeO), and Ce (CeO) catalysts in tight contact conditions was investigated using ITKA (isotopic transient kinetic analysis). The obtained results suggest that lattice-bulk oxygen from all studied catalysts takes part in the soot oxidation process but with varying relative contributions: for the Ce catalyst, this contribution is practically 100%, whereas with decreasing Ce content in Mn-Ce catalysts, the significance of lattice-bulk oxygen for soot oxidation diminishes. For the Mn catalyst, it is estimated to be below 50%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!