Next-Generation Sequencing and Mutational Analysis: Implications for Genes Encoding LINC Complex Proteins.

Methods Mol Biol

Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.

Published: April 2019

Targeted panel, whole exome, or whole genome DNA sequencing using next-generation sequencing (NGS) allows for extensive high-throughput investigation of molecular machines/systems such as the LINC complex. This includes the identification of genetic variants in humans that cause disease, as is the case for some genes encoding LINC complex proteins. The relatively low cost and high speed of the sequencing process results in large datasets at various stages of analysis and interpretation. For those not intimately familiar with the process, interpretation of the data might prove challenging. This review lays out the most important and most commonly used materials and methods of NGS. It also discusses data analysis and potential pitfalls one might encounter because of peculiarities of the laboratory methodology or data analysis pipelines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709851PMC
http://dx.doi.org/10.1007/978-1-4939-8691-0_22DOI Listing

Publication Analysis

Top Keywords

linc complex
12
next-generation sequencing
8
genes encoding
8
encoding linc
8
complex proteins
8
data analysis
8
sequencing mutational
4
analysis
4
mutational analysis
4
analysis implications
4

Similar Publications

We report the development and performance of a novel genomics platform, TempO-LINC, for conducting high-throughput transcriptomic analysis on single cells and nuclei. TempO-LINC works by adding cell-identifying molecular barcodes onto highly selective and high-sensitivity gene expression probes within fixed cells, without having to first generate cDNA. Using an instrument-free combinatorial indexing approach, all probes within the same fixed cell receive an identical barcode, enabling the reconstruction of single-cell gene expression profiles across as few as several hundred cells and up to 100,000 + cells per sample.

View Article and Find Full Text PDF

The microtubule motor cytoplasmic dynein-1 transports and positions various organelles, but the molecular basis of this functional diversity is not fully understood. Cargo adaptors of the Hook protein family recruit dynein to early endosomes (EE) in fungi and human cells by forming the FTS-Hook-FHIP (FHF) complex. By contrast, the Hook homolog ZYG-12 recruits dynein to the nuclear envelope (NE) in the meiotic gonad and mitotic early embryo by forming a Linker of Nucleoskeleton and Cytoskeleton (LINC) complex.

View Article and Find Full Text PDF

The Dual Roles of Lamin A/C in Macrophage Mechanotransduction.

Cell Prolif

December 2024

Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany.

Cellular mechanotransduction is a complex physiological process that integrates alterations in the external environment with cellular behaviours. In recent years, the role of the nucleus in mechanotransduction has gathered increased attention. Our research investigated the involvement of lamin A/C, a component of the nuclear envelope, in the mechanotransduction of macrophages under compressive force.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterised by the absence of targetable hormone receptors and increased metastatic rates. As nuclear softening strongly contributes to TNBC's enhanced metastatic capacity, increasing the nuclear stiffness of TNBC cells may present a promising therapeutic avenue. Previous evidence has demonstrated the ability of Sirtuin 2 (SIRT2) inhibition to induce cytoskeletal reorganisation, a key factor in regulating nuclear mechanics.

View Article and Find Full Text PDF

Mitosis in eukaryotes involves reorganization of the nuclear envelope (NE) and microtubule-organizing centres (MTOCs). In , the causative agent of malaria, male gametogenesis mitosis is exceptionally rapid and divergent. Within 8 minutes, the haploid male gametocyte genome undergoes three replication cycles (1N to 8N), while maintaining an intact NE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!