We describe a recently reported method for directly applying a known, nanonewton-scale force to the nucleus in a living, intact cell. First, a suction seal is applied on the nuclear surface using a micropipette. Then, the micropipette is translated away from the nucleus. The nucleus deforms and translates with the moving micropipette and then eventually detaches from the micropipette and recovers (roughly) its original shape and position. At the point of detachment, the resisting force (from the deformed nucleus and connected cytoskeleton) balances the suction force. Because the suction force is precisely known and reproducibly applied, this method therefore allows comparisons of nuclear response across disruptions to the cytoskeleton, nucleus, or cell. This method is useful for quantifying nuclear elastic properties in its native, integrated environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110108 | PMC |
http://dx.doi.org/10.1007/978-1-4939-8691-0_8 | DOI Listing |
Cureus
December 2024
Department of Oral and Maxillofacial Surgery, National Hospital Organization, Kyoto Medical Center, Kyoto, JPN.
This study aimed to reproduce a complete wooden plate denture, which was the first in the world to retain suction under negative pressure, using the same materials and methods from 400 years ago (i.e., the Edo period) to verify its masticatory performance.
View Article and Find Full Text PDFSci Rep
January 2025
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
Many aquatic organisms utilize suction-based organs to adhere to diverse substrates in unpredictable environments. For multiple fish species, these adhesive discs include a softer disc margin consisting of surface structures called papillae, which stabilize and seal on variable substrates. The size, arrangement, and density of these papillae are quite diverse among different species, generating complex disc patterns produced by these structures.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China. Electronic address:
The ecological risk of microplastics (MPs) is raising concern about their transport and fate in aquatic ecosystems. The capture of MPs by bubbles is a ubiquitous natural phenomenon in water-based environment, which plays a critical role in the global cycling of MPs, thereby increasing their environmental threats. However, the nanoscale interaction mechanisms between bubbles and MPs underlying MPs transport by bubbles in complex environmental systems remain elusive.
View Article and Find Full Text PDFAnn Biomed Eng
December 2024
Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden.
Vacuum-assisted delivery (VAD) uses a vacuum cup on the fetal scalp to apply traction during uterine contractions, assisting complicated vaginal deliveries. Despite its widespread use, VAD presents a higher risk of neonatal morbidity compared to natural vaginal delivery and biomechanical evidence for safe VAD traction forces is still limited. The aim of this study is to develop and assess the feasibility of an experimental VAD testing setup, and investigate the impact of traction forces on fetal brain deformation.
View Article and Find Full Text PDFJ Formos Med Assoc
December 2024
Division of Colorectal Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100225, Taiwan. Electronic address:
Background: Surgical smoke generated by energy devices poses health risks to medical staff. During laparoscopic surgery, the smoke aggregating around the camera obstructs the visual field, forcing surgeons to interrupt surgery, and may increase surgical risk. We propose a proximal smoke evacuation method to improve surgical quality by effectively eliminating surgical smoke.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!