Attaching an additional binding site directed moiety or a ligand to an ATP-binding site inhibitor has been used as a strategy to increase kinase binding affinity and specificity. The moieties typically used here as the second binding partner are varied from simple organic groups to ligands such as peptides derived from substrate binding site sequences. So far these hetero-bivalent ligands were developed targeting additional binding sites closer to the ATP-binding pocket. Here we report a unique expansion of this hetero-bivalent idea by: (I) targeting a new binding site much farther away from ATP-binding site, (II) using a peptide uniquely derived from a portion of the same kinase sequence that has been reported to turn and bind to the above distance binding pocket (used as the second binding ligand), and (III) optimizing a much longer and flexible linker (to connect ATP-binding site inhibitor and above mentioned second peptide sequence) with multistep, yet complete on-bead synthesis approach. We converted a very weak EphA3-kinase ATP-binding site inhibitor-PP2 into a potent hetero-bivalent ligand by tethering to a unique 5-mer peptide sequence that derived from the linker region of EphA3 that connects kinase and sterile alpha motif (SAM) domains. Our design highlight the use of distance binding pockets to ATP-binding site as the second targeted site, while introducing the idea of extracting natural peptide sequences that already exist within the same kinase sequence, by a careful screening of available crystal structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8ob01406j | DOI Listing |
Proteins
December 2024
Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
The pathogenic G361A variant of CRAF, associated with increased intrinsic kinase activity in Noonan syndrome (NS), remains poorly understood in terms of its molecular and structural impact on kinase activity. To elucidate the mechanistic implications of the glycine to alanine substitution at residue 361 in CRAF, we employed molecular dynamics simulations. Our findings reveal that this mutation predominantly affects the ATP binding pocket and critical intermolecular interactions within the active cleft that favors the phosphate transfer reaction.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India.
Saccharomyces cerevisiae meiosis-specific Hop1, a structural constituent of the synaptonemal complex, also facilitates the formation of programmed DNA double-strand breaks and the pairing of homologous chromosomes. Here, we reveal a serendipitous discovery that Hop1 possesses robust DNA-independent ATPase activity, although it lacks recognizable sequence motifs required for ATP binding and hydrolysis. By leveraging molecular docking combined with molecular dynamics simulations and biochemical assays, we identified an ensemble of five amino acid residues in Hop1 that could potentially participate in ATP-binding and hydrolysis.
View Article and Find Full Text PDFDrug Dev Res
February 2025
Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India.
The remarkable clinical success of third-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) has significantly advanced the treatment landscape for non-small-cell lung cancer (NSCLC). However, the emergence of the tertiary point mutation C797S poses a substantial obstacle to their clinical efficacy, leading to a dearth of FDA-approved targeted therapies for patients harboring this mutation. Addressing this pressing clinical challenge necessitates the development of novel therapeutic agents targeting the clinically challenging EGFR mutation.
View Article and Find Full Text PDFJ Chem Inf Model
December 2024
Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Accurate identification of adenosine triphosphate (ATP) binding sites is crucial for understanding cellular functions and advancing drug discovery, particularly in targeting kinases for cancer treatment. Existing methods face significant challenges due to their reliance on time-consuming precomputed features and the heavily imbalanced nature of binding site data without further investigations on their utility in drug discovery. To address these limitations, we introduced Multiview-ATPBind and ResiBoost.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Microbiology and Molecular Genetics. Electronic address:
While ATP-site inhibitors for protein-tyrosine kinases are often effective drugs, their clinical utility can be limited by off-target activity and acquired resistance mutations due to the conserved nature of the ATP-binding site. However, combining ATP-site and allosteric kinase inhibitors can overcome these shortcomings in a double-drugging framework. Here we explored the allosteric effects of two pyrimidine diamines, PDA1 and PDA2, on the conformational dynamics and activity of the Src-family tyrosine kinase Hck, a promising drug target for acute myeloid leukemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!