Background: Enhancers are distal cis-regulatory elements that control gene expression. Despite an increasing appreciation of the importance of enhancers in cellular function and disease, our knowledge of enhancer-regulated transcription is very limited. Nascent RNA sequencing technologies, such as global nuclear run-on sequencing (GRO-seq) and precision run-on sequencing (PRO-seq), not only provide a direct and reliable measurement of enhancer activity, but also allow for quantifying transcription of enhancers and target genes simultaneously, making these technologies extremely useful for exploring enhancer-mediated regulation.

Results: Nascent RNA sequencing analysis (NRSA) provides a comprehensive view of enhancer-mediated gene regulation. NRSA not only outperforms existing methods for enhancer identification, but also enables annotation and quantification of active enhancers, and prediction of their target genes. Furthermore, NRSA identifies functionally important enhancers by integrating 1) nascent transcriptional changes in enhancers and their target genes and 2) binding profiles from regulator(s) of interest. Applied to wildtype and histone deacetylase 3 (Hdac3) knockout mouse livers, NRSA showed that HDAC3 regulates RNA polymerase recruitment through both proximal (promoter) and distal (enhancer) regulatory elements. Integrating ChIP-seq with PRO-seq data, NRSA prioritized enhancers based on their potential contribution to mediating HDAC3 regulation.

Conclusions: NRSA will greatly facilitate the usage of nascent RNA sequencing techniques and accelerate the study of enhancer-mediated regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107967PMC
http://dx.doi.org/10.1186/s12864-018-5016-zDOI Listing

Publication Analysis

Top Keywords

nascent rna
16
rna sequencing
16
target genes
12
sequencing analysis
8
enhancer-mediated gene
8
gene regulation
8
run-on sequencing
8
enhancers target
8
enhancers
7
sequencing
6

Similar Publications

The Rbfox proteins regulate alternative pre-mRNA splicing by binding to the RNA element GCAUG. In the nucleus, most of Rbfox is bound to the large assembly of splicing regulators (LASR), a complex of RNA-binding proteins that recognize additional RNA motifs. However, it remains unclear how the different subunits of the Rbfox/LASR complex act together to bind RNA and regulate splicing.

View Article and Find Full Text PDF

Cells preserve and convey certain gene expression patterns to their progeny through the mechanism called epigenetic memory. Epigenetic memory, encoded by epigenetic markers and components, determines germline inheritance, genomic imprinting, and X chromosome inactivation. First discovered long non coding RNAs were implicated in genomic imprinting and X-inactivation and these two phenomena clearly demonstrate the role of lncRNAs in epigenetic memory regulation.

View Article and Find Full Text PDF

WBSCR16 is essential for mitochondrial 16S rRNA processing in mammals.

Nucleic Acids Res

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China.

Mitochondrial rRNAs play important roles in regulating mtDNA-encoded gene expression and energy metabolism subsequently. However, the proteins that regulate mitochondrial 16S rRNA processing remain poorly understood. Herein, we generated adipose-specific Wbscr16-/-mice and cells, both of which exhibited dramatic mitochondrial changes.

View Article and Find Full Text PDF

Retroviruses carry a genomic intron-containing RNA with a long structured 5'-untranslated region, which acts either as a genome encapsidated in the viral progeny or as an mRNA encoding the key structural protein, Gag. We developed a single-molecule microscopy approach to simultaneously visualize the viral mRNA and the nascent Gag protein during translation directly in the cell. We found that a minority of the RNA molecules serve as mRNA and that they are translated in a fast and efficient process.

View Article and Find Full Text PDF

Retroviral genome selection and virion assembly remain promising targets for novel therapeutic intervention. Recent studies have demonstrated that the Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type-1 (HIV-1) undergo nuclear trafficking, colocalize with nascent genomic viral RNA (gRNA) at transcription sites, may interact with host transcription factors, and display biophysical properties characteristic of biomolecular condensates. In the present work, we utilized a controlled in vitro condensate assay and advanced imaging approaches to investigate the effects of interactions between RSV Gag condensates and viral and nonviral RNAs on condensate abundance and organization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!