van der Waals heterostructures that are usually formed using atomically thin transition-metal dichalcogenides (TMDCs) with a direct band gap in the near-infrared to the visible range are promising candidates for low-dimension optoelectronic applications. The interlayer interaction or coupling between two-dimensional (2D) layer and the substrate or between adjacent 2D layers plays an important role in modifying the properties of the individual 2D material or device performances through Coulomb interaction or forming interlayer excitons. Here, we report the realization of quasi-zero-dimensional (0D) photon emission of WS in a coupled hybrid structure of monolayer WS and InGaN quantum dots (QDs). An interfacially bound exciton, i.e., the coupling between the excitons in WS and the electrons in QDs, has been identified. The emission of this interfacially bound exciton inherits the 0D confinement of QDs as well as the spin-valley physics of excitons in monolayer WS. The effective coupling between 2D materials and conventional semiconductors observed in this work provides an effective way to realize the 0D emission of 2D materials and opens the potential of compact on-chip integration of valleytronics and conventional electronics and optoelectronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.8b02143 | DOI Listing |
bioRxiv
December 2024
Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA.
Most eukaryotes possess two Rad51/RecA family DNA recombinases that are thought to have arisen from an ancient gene duplication event: Rad51, which is expressed in both mitosis and meiosis; and Dmc1, which is only expressed in meiosis. To explore the evolutionary relationship between these recombinases, here, we present high-resolution CryoEM structures of Rad51 filaments and Dmc1 filaments bound to ssDNA, which reveal a pair of stacked interfacial aromatic amino acid residues that are nearly universally conserved in Rad51 but are absent from Dmc1. We use a combination of bioinformatics, genetic analysis of natural sequence variation, and deep mutational analysis to probe the functionally tolerated sequence space for these stacked aromatic residues.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana 500078, India.
Cyanogenic glycosides are plant-derived, nitrogen-containing secondary metabolites that release toxic cyanide ions upon hydrolysis by glycosidic enzymes. Therefore, consuming food items enriched with such compounds without proper remediation can cause acute cyanide intoxication. Thus, in this work, we utilize cyanide-responsive oxidized bisindole-based chromogenic probes to detect cyanogenic glycosides, such as amygdalin and linamarin (LOD: 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Wuhan University of Technology, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, CHINA.
Nanophotonics
May 2024
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
Fabry-Pérot (F-P) cavity and metal hole array are classic photonic devices. Integrating F-P cavity with holey metal typically enhances interfacial reflection and dampens wave transmission. In this work, a hybrid bound surface state is found within rectangular metal holes on a silicon substrate by merging an extraordinary optical transmission (EOT) mode and a high-order F-P cavity mode both spatially and spectrally.
View Article and Find Full Text PDFMater Horiz
December 2024
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
Homojunction engineering holds promise for creating high-performance photocatalysts, yet significant challenges persist in establishing and modulating an effective junction interface. To tackle this, we designed and constructed a novel Janus homojunction photocatalyst by integrating two different forms of triazole-based carbon nitride (CN). In this design, super-sized, ultrathin nanosheets of carbon-rich CN grow epitaxially on a nitrogen-rich honeycomb network of CN, creating a tightly bound and extensive interfacial contact area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!