Ten phenolic compounds were examined for their effect on mung bean (Phaseolus aureus L.) hypocotyl growth and on respiration and coupling parameters of isolated mung bean hypocotyl mitochondria. Three compounds-tannic, gentisic, and p-coumaric acids-inhibited hypocotyl growth and when incubated with isolated hypocotyl mitochondria released respiratory control, inhibited respiration, and prevented substrate-supported Ca and PO transport. Vanillic acid also inhibited hypocotyl growth and reduced mitochondrial Ca uptake but did not affect respiration or respiratory control of isolated mitochondria. This is the first compound reported to selectively inhibit Ca uptake in plant mitochondria. Two other phenolic compounds-α, 3,5-resorcylic and protocatechuic acids-showed no significant effect on hypocotyl growth and did not affect mitochondrial oxidative phosphorylation either separately or in various combinations. Four phenolic compounds-ferulic, caffeic, p-hydroxybenzoic, and syringic acids-showed a significant reduction in mung bean hypocotyl growth but did not inhibit any of the mitochondrial processes examined. The results show that phenolic compounds which alter respiration or coupling responses in isolated mitochondria also inhibit hypocotyl growth and may reflect a mechanism of action for these natural growth inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/j.1537-2197.1975.tb12343.x | DOI Listing |
Int J Mol Sci
December 2024
Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.
Adventitious root (AR) formation in plants originates from non-root organs such as leaves and hypocotyls. Auxin signaling is essential for AR formation, but the roles of other phytohormones are less clear. In , at least two distinct mechanisms can produce ARs, either from hypocotyls as part of the general root architecture or from wounded organs during de novo root regeneration (DNRR).
View Article and Find Full Text PDFPlant J
December 2024
RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan.
Brassinosteroids (BRs) are plant steroid hormones that regulate plant development and environmental responses. BIL1/BZR1, a master transcription factor that regulates approximately 3000 genes in the BR signaling pathway, is transported to the nucleus from the cytosol in response to BR signaling; however, the molecular mechanism underlying this process is unknown. Here, we identify a novel BR signaling factor, BIL7, that enhances plant growth and positively regulates the nuclear accumulation of BIL1/BZR1 in Arabidopsis thaliana.
View Article and Find Full Text PDFTrends Plant Sci
December 2024
School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. Electronic address:
TANDEM ZINC-FINGER/PLUS3 (TZP) is a nuclear-localized protein with multifaceted roles in modulating plant growth and development under diverse light conditions. The unique combination of two intrinsically disordered regions (IDRs), two zinc-fingers (ZFs), and a PLUS3 domain provide a platform for interactions with the photoreceptors phytochrome A (phyA) and phyB, light signaling components, and nucleic acids. TZP controls flowering and hypocotyl elongation by regulating gene expression and protein abundance in a blue, red, or far-red light-specific context.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China.
The Arabidopsis transcription factor ATAF1 negatively regulates thermomorphogenesis by inhibiting the expression of key genes involved in thermoresponsive elongation. DET1-mediated ubiquitination promotes ATAF1 degradation. In response to warmer, non-stressful average temperatures, plants have evolved an adaptive morphologic response called thermomorphogenesis to increase their fitness.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Botany, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI 53706, USA. Electronic address:
Rapid cell expansion pushes the Arabidopsis hypocotyl (juvenile stem) through the soil until blue light, acting first through phototropin 1 (phot1) and then through cryptochrome 1 (cry1), suppresses elongation to produce a length characteristic of established, photosynthetically capable seedlings. To determine where these two different blue-light receptors act to suppress hypocotyl elongation, we measured relative elemental growth rate, specifically along the hypocotyl midline at 5-min intervals before and during blue light, using a machine-learning-based image analysis pipeline designed specifically for this kinematic analysis of growth. In darkness, hypocotyl material expanded most rapidly (approximately 4% h) in a broad zone approximately 1 mm below the apical terminus of the hypocotyl (cotyledonary node).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!