Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With ever increasing scientific knowledge and awareness, research is underway around the globe to design new types of stimuli (external/internal) responsive nano-carriers for biotechnological applications at large and biomedical/pharmaceutical in particular. Based on literature evidence, stimuli-responsive carriers have been classified into four major categories, i.e. (1) physical, (2) chemical, (3) biological, and (4) dual (combination of any of the first three classes). Among various types, redox-responsive nano-carriers are of supreme interests and discussed here in this review. The difference in redox potential in tumor and normal tissue is considered as a potential target for tumor targeting leading to the development of redox-responsive drug delivery systems (DDS). In this regard, a high concentration of glutathione in tumor/intracellular environment has extensively been exploited. Disulfide bonds were found as a promising tool for designing redox-responsive which tend to cleave in a reductive environment forming sulfhydryl groups. Many nano-carriers have been explored widely to control tumor growth. These systems were used against the tumor xenograft animal model and showed improved tumor targeting with tumor growth inhibition. Herein, an effort has been made to summarize various aspects from design to development of numerous types of redox-responsive DDS including liposomes, micelles, nanoparticles, nanogel and prodrug based nanomedicines. An emphasis is also given on various types of nano-carriers with special reference to the tumor-targeted drug delivery applications. Also, dual responsive nano-carriers (in addition to redox-responsive) have also been briefly discussed. Towards the end of the chapter, the information is also given on their future perspectives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2018.08.034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!