Microbial cell factories for the sustainable manufacturing of B vitamins.

Curr Opin Biotechnol

Biosyntia Aps, 2100 Copenhagen, Denmark. Electronic address:

Published: April 2019

Vitamins are essential compounds in human and animal diets. Their demand is increasing globally in food, feed, cosmetics, chemical and pharmaceutical industries. Most current production methods are unsustainable because they use non-renewable sources and often generate hazardous waste. Many microorganisms produce vitamins naturally, but their corresponding metabolic pathways are tightly regulated since vitamins are needed only in catalytic amounts. Metabolic engineering is accelerating the development of microbial cell factories for vitamins that could compete with chemical methods that have been optimized over decades, but scientific hurdles remain. Additional technological and regulatory issues need to be overcome for innovative bioprocesses to reach the market. Here, we review the current state of development and challenges for fermentative processes for the B vitamin group.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.copbio.2018.07.006DOI Listing

Publication Analysis

Top Keywords

microbial cell
8
cell factories
8
vitamins
5
factories sustainable
4
sustainable manufacturing
4
manufacturing vitamins
4
vitamins vitamins
4
vitamins essential
4
essential compounds
4
compounds human
4

Similar Publications

Molecular dynamics of photosynthetic electron flow in a biophotovoltaic system.

Environ Sci Ecotechnol

January 2025

Systems Biotechnology Group, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.

Biophotovoltaics (BPV) represents an innovative biohybrid technology that couples electrochemistry with oxygenic photosynthetic microbes to harness solar energy and convert it into electricity. Central to BPV systems is the ability of microbes to perform extracellular electron transfer (EET), utilizing an anode as an external electron sink. This process simultaneously serves as an electron sink and enhances the efficiency of water photolysis compared to conventional electrochemical water splitting.

View Article and Find Full Text PDF

The goal of this research is to develop and characterize low-cost NHI doped polyvinyl alcohol (PVA)-4-ethyl-4-methylmorpholiniumbromide (ionic liquid) anion exchange membranes (AEM) and its application for membrane cathode assembly. Physical characterization like FTIR, POM, and XRD notified the functional groups, basic structure, and amorphosity of the produced membrane, and it was employed in single-chambered microbial fuel cells (sMFCs) as a separator. The membranes in terms of oxygen diffusion, proton conductivity, and ion exchange capabilities were evaluated.

View Article and Find Full Text PDF

Introduction: The low incidence of intradialytic hypotension (IDH) in high-volume (HV) hemodiafiltration (HDF) may help in maintaining gut perfusion during treatment. Preservation of gut endothelial integrity would limit or prevent bacterial translocation and subsequent systemic inflammation, which may contribute to the low mortality rate in HV-HDF.

Methods: Forty patients were cross-over randomized to standard (hemodialysis [HD]) (S-HD), cool HD (C-HD), and HDF (low-volume [LV] and HV, convection volume (CV) of 15 L and ≥ 23 L per session, respectively), each for 2 weeks.

View Article and Find Full Text PDF

Hemophilia A (HA) is an inherited condition that is characterized by a lack of coagulation factor VIII (FVIII), which is needed for blood clotting. To produce recombinant factor VIII (rFVIII) for treatment, innovative methods are required. This study presents a thorough examination of the genetic engineering and biotechnological methods that are essential for the production of this complex process.

View Article and Find Full Text PDF

Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Icm/Dot Type IV secretion system (T4SS) to replicate in amoebae and macrophages. The opportunistic pathogen responds to stress by forming 'viable but non-culturable' (VBNC) cells, which cannot be detected by standard cultivation-based techniques. In this study, we document that L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!