Objective: PGC-1α is already known as a significant regulator of mitochondrial biogenesis, oxidative phosphorylation and fatty acid metabolism. Our study focuses on the role of PGC1α in morbid obesity, in five different tissues, collected from 50 severely obese patients during planned bariatric surgery.

Methods: The investigated tissues included subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), skeletal muscle (SM), extramyocellular adipose tissue (EMAT) and liver. PGC1α expression was investigated with immunohistochemistry and evaluated with microscopy.

Results: Our findings highlighted significant positive inter-tissue correlations regarding PGC-1α expression between several tissue pairs (VAT-SAT, VAT-SM, VAT-EMAT, SAT-SM, SAT-EMAT, SM-EMAT). Moreover, we found significant negative correlations between PGC1α expression in VAT with CD68 expression in skeletal muscle and EMAT, implying a possible protective role of PGC1α against obesity-induced inflammation.

Conclusion: Unmasking the inter-tissue communication networks regarding PGC-1α expression in morbid obesity, will give more insight into its significant role in obesity-induced diseases. PGC1α could potentially represent a future preventive and therapeutic target against obesity-induced disease, probably through enhancing mitochondrial biogenesis and metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hjc.2018.08.002DOI Listing

Publication Analysis

Top Keywords

adipose tissue
12
severely obese
8
obesity-induced disease
8
mitochondrial biogenesis
8
role pgc1α
8
morbid obesity
8
skeletal muscle
8
pgc1α expression
8
pgc-1α expression
8
pgc1α
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!