Metabolic engineering has been vital to the development of industrial microbes such as the yeast Saccharomyces cerevisiae. However, sequential rounds of modification are often needed to achieve particular industrial design targets. Systems biology approaches can aid in identifying genetic targets for modification through providing an integrated view of cellular physiology. Recently, research into the generation of commercial yeasts that can produce reduced-ethanol wines has resulted in metabolically-engineered strains of S. cerevisiae that are less efficient at producing ethanol from sugar. However, these modifications led to the concomitant production of off-flavour by-products. A combination of transcriptomics, proteomics and metabolomics was therefore used to investigate the physiological changes occurring in an engineered low-ethanol yeast strain during alcoholic fermentation. Integration of 'omics data identified several metabolic reactions, including those related to the pyruvate node and redox homeostasis, as being significantly affected by the low-ethanol engineering methodology, and highlighted acetaldehyde and 2,4,5-trimethyl-1,3-dioxolane as the main off-flavour compounds. Gene remediation strategies were then successfully applied to decrease the formation of these by-products, while maintaining the 'low-alcohol' phenotype. The data generated from this comprehensive systems-based study will inform wine yeast strain development programmes, which, in turn, could potentially play an important role in assisting winemakers in their endeavour to produce low-alcohol wines with desirable flavour profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2018.08.006DOI Listing

Publication Analysis

Top Keywords

wine yeast
8
yeast strain
8
systems-based approaches
4
approaches enable
4
enable identification
4
identification gene
4
gene targets
4
targets improve
4
improve flavour
4
flavour profile
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!