Cilostazol (Ciloz) a potent Type III phosphodiesterase inhibitor is effective against inflammation, insulin resistance and cardiomyopathy. However, the effect of Ciloz on obesity-associated left ventricular diastolic dysfunction has not been explored yet. Hence, we examined the effect of Ciloz on cardiac remodelling and dysfunction in non-obese and obese-insulin resistant mice infused with AngiotensinII (AngII). Male C57BL/6 J mice were initially subjected to 19 weeks of chow or high fat diet (HFD) regimen and thereafter animals were randomised for AngII (1500 ng/kg/min, s.c) infusion or saline and Ciloz (50 mg/kg, p.o) for another 1 week. Obese and non-obese mice infused with AngII exhibited significant diastolic dysfunction and features of heart failure with preserved ejection fraction (HFpEF) since a decrease in fractional shortening and no change in ejection fraction were observed when compared with respective controls. Administration of AngII and Ciloz in HFD fed mice significantly improved the left ventricular function compared with AngII infused HFD mice as evinced from the echocardiographic data. Further, Ciloz treatment significantly reduced cardiomyocyte area, interstitial and perivascular fibrosis; and collagen deposition. Moreover, Ciloz reduced the inflammatory milieu in the heart as evinced by decreased F4/80 and CD68 cells; IL-1β and IL-6 gene transcripts. Quantitative assessment of the expression levels revealed substantial upregulation of MMP-9 (pro- and mature-forms) and α-SMA in the left ventricle of AngII infused HFD-fed mice, which was considerably suppressed by Ciloz regimen. The beneficial effect of Ciloz was associated with the normalization in gene expression of hypertrophic and fibrotic markers. Likewise, Ciloz administration markedly reduced the AngII and HFD induced TGF-β1/SMAD3 and Akt/mTOR signalling. Additionally, AngII administered and HFD-fed mice showed increased glycolytic flux, which was considerably diminished by Ciloz treatment as indicated from suppressed PKM2, HK-2, PDK-2, HIF-1α mRNA and GLUT-1 protein expression. Taken together, Ciloz might be therapeutically exploited against AngII and obesity-associated diastolic dysfunction thereby preventing overt heart failure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2018.08.017DOI Listing

Publication Analysis

Top Keywords

diastolic dysfunction
16
heart failure
12
ejection fraction
12
ciloz
12
angii
9
failure preserved
8
preserved ejection
8
obese non-obese
8
mice
8
left ventricular
8

Similar Publications

Predictive value of epicardial adipose tissue volume for early detection of left ventricular dysfunction in patients suspected of coronary artery disease.

Clin Radiol

November 2024

Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China. Electronic address:

Aim: To investigate the relationship between epicardial adipose tissue (EAT) and myocardial strain and the severity of coronary artery disease (CAD), and to evaluate the predictive value of EAT parameters in early left ventricular (LV) diastolic dysfunction.

Materials And Methods: One hundred seventy patients with suspected CAD who underwent both coronary computed tomography angiography and echocardiography were enrolled in 2020. LV global strains were calculated using commercial software.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) frequently coexists with cerebral small vessel disease (CSVD) is common in the aging population, yet the underlying mechanisms are not yet fully understood. Both long-term blood pressure variability (BPV) and plasma neurofilament light (PNFL) were identified as potential biomarkers for AD and CSVD. This study aims to understand the mechanisms of comorbidity between AD and CSVD by investigating the associations among BPV, PNFL, and comorbidity.

View Article and Find Full Text PDF

Background: Early vascular aging (EVA), manifesting as increases in central arterial stiffness and BP, is associated with cognitive impairment in humans. EVA and cognitive impairment occurs in Dahl salt-sensitive (DSS) rats consuming a normal salt (NS) diet with an advancing age. Quercetin (QRC), a flavonoid with anti-oxidant, anti-inflammatory and senolytic properties, previously shown to reduce salt-sensitive hypertension in DSS.

View Article and Find Full Text PDF

Study on the effect of full body isometric resistance training on cardiovascular pressure response.

J Hypertens

February 2025

Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing 400715, China.

Background And Aims: Exploring the effect of different isometric resistance training (IRT) on improving blood pressure, so as to provide important reference for the design of aerobic exercise prescription for IRT to improve blood pressure.

Methods: Forty eight overweight or obese college students with irregular exercise habits were randomly divided into four groups and underwent exercise intervention three times a week for a total of 6 weeks. Cardiovascular changes were evaluated before the first and 18th exercise sessions, as well as 0, 30, and 60 min after exercise.

View Article and Find Full Text PDF

This study aimed to investigate the effects of chronic sympathoinhibition on glucose uptake by the myocardium and by the skeletal muscle in an animal model of obesity associated with leptin signaling deficiency. 6 obese Zucker rats (OZR) and 6 control Lean Zucker rats (LZR) were studied during basal conditions, chronic clonidine administration (30 days, 300 µg/kg), and washout recovery period. Glucose uptake in the myocardium and in the skeletal muscle was measured using positron emission tomography (PET) and 2-[18F] fluoro-2-deoxy-D-glucose ([18F]FDG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!