This study was conducted to investigate the effect of 4-phenylbutyric acid (4-PBA) on vital organ injury following sodium taurocholate-induced acute pancreatitis (AP) in rats and the pertinent mechanism. The serum biochemical indicators and key inflammatory cytokines, histopathological damage and apoptosis of vital organs in rat AP, were evaluated in the presence or absence of 4-PBA. Moreover, mRNA and protein levels of endoplasmic reticulum stress (ERS) markers were assessed. 4-PBA significantly attenuated the structural and functional damage of vital organs, including serum pancreatic enzymes, hepatic enzymes, creatinine, and urea. The morphological changes and infiltration of neutrophils and macrophages were reduced as well. These effects were accompanied by decreased serum levels of proinflammatory TNF-α and IL-1β. Furthermore, 4-PBA diminished the expression of ERS markers (glucose-regulated protein 78, CCAAT/enhancer-binding protein homologous protein, protein kinase R-like ER kinase, activated transcription factor 6, and type-1 inositol requiring enzyme) in vital organs of AP rats. 4-PBA also reduced AP-induced apoptosis in lung, liver, and kidney tissues as shown by TUNEL assay. The present study demonstrated that 4-PBA protected pancreas, lung, liver, and kidney from injury in rat AP by regulating ERS and mitigating inflammatory response to restrain cell death and further suggested that 4-PBA may have potential therapeutic implications in the disease. NEW & NOTEWORTHY In this study, we suggest that endoplasmic reticulum stress (ERS) is an important player in the development of acute pancreatitis-induced multiorgan injury, providing additional evidence for the proinflammatory role of ERS. Because 4-phenylbutyric acid has been suggested to inhibit ERS in many pathological conditions, it is possible that this effect can be involved in alleviating inflammatory response and cell death to ameliorate vital organ damage following acute pancreatitis induced by sodium taurocholate in rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.00102.2018 | DOI Listing |
J Agric Food Chem
January 2025
College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.
View Article and Find Full Text PDFSci Rep
January 2025
School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.
Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.
Life Sci Alliance
April 2025
Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear.
View Article and Find Full Text PDFCurr Top Dev Biol
January 2025
Department of Pharmaceutics, School of Pharmacy, University of Washington.
The active metabolite of vitamin A, all-trans-retinoic acid (atRA), is critical for maintenance of many cellular processes. Although the enzymes that can synthesize and clear atRA in mammals have been identified, their tissue and cell-type specific roles are still not fully established. Based on the plasma protein binding, tissue distribution and lipophilicity of atRA, atRA partitions extensively to lipid membranes and other neutral lipids in cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!