Among reactive oxygen species (ROS), HO alone acts as a signaling molecule that promotes diverse phenotypes depending on the intracellular concentration. Mitochondria have been suggested as both sources and sinks of cellular HO, and mitochondrial dysfunction has been implicated in diseases such as cancer. A genetically encoded HO generator, d-amino acid oxidase (DAAO), was targeted to the mitochondria of human cells, and its utility in investigating cellular response to a range of HO doses over time was assessed. Organelle-specific peroxiredoxin dimerization and protein S-glutathionylation were measured as indicators of increased HO flux due to the activity of DAAO. Cell death was observed in a concentration- and time-dependent manner, and protein oxidation shifted in localization as the dose increased. This work presents the first systematic study of HO-specific perturbation of mitochondria in human cells, and it reveals a marked sensitivity of this organelle to increases in HO in comparison with prior studies that targeted the cytosol.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.8b00174DOI Listing

Publication Analysis

Top Keywords

human cells
12
cell death
8
mitochondria human
8
mitochondrial generation
4
generation tunable
4
tunable chemogenetic
4
chemogenetic tool
4
tool perturb
4
perturb redox
4
redox homeostasis
4

Similar Publications

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).

View Article and Find Full Text PDF

Optimized methods for scRNA-seq and snRNA-seq of skeletal muscle stored in nucleic acid stabilizing preservative.

Commun Biol

January 2025

Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Single cell studies have transformed our understanding of cellular heterogeneity in disease but the need for fresh starting material can be an obstacle, especially in the context of international multicenter studies and archived tissue. We developed a protocol to obtain high-quality cells and nuclei from dissected human skeletal muscle archived in the preservative Allprotect® Tissue Reagent. After fluorescent imaging microscopy confirmed intact nuclei, we performed four protocol variations that compared sequencing metrics between cells and nuclei enriched by either filtering or flow cytometry sorting.

View Article and Find Full Text PDF

Previous studies highlighting the pivotal function of the S100A8 protein have shown that inflammation and vascular endothelial harm play a major role in deep vein thrombosis (DVT) development, as evidenced by earlier studies highlighting the pivotal function of the S100 calcium-binding protein A8 (S100A8). Therefore, we aimed to establish a connection between S100A8 and DVT and investigate the role of S100A8 in DVT development. Blood specimens were taken from 23 patients with DVT and 31 controls.

View Article and Find Full Text PDF

Exposure to vanadium (V) occurs through the ingestion of contaminated water, polluted soil, V-containing foods and medications, and the toxicity and absorption during the small intestine phase after oral ingestion play crucial roles in the ultimate health hazards posed by V. In this study, the human colon adenocarcinoma (Caco-2) cells were selected as an intestinal absorption model to investigate the uptake and cytotoxicity of vanadyl sulfate (VOSO) and sodium orthovanadate (NaVO). Our results confirmed the cytotoxic effects of V(IV) and V(V) and revealed a greater toxicity of V(IV) than V(V) towards Caco-2 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!