Conformational plasticity of the intrinsically disordered protein ASR1 modulates its function as a drought stress-responsive gene.

PLoS One

Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

Published: February 2019

Plants in arid zones are constantly exposed to drought stress. The ASR protein family (Abscisic, Stress, Ripening) -a subgroup of the late embryogenesis abundant superfamily- is involved in the water stress response and adaptation to dry environments. Tomato ASR1, as well as other members of this family, is an intrinsically disordered protein (IDP) that functions as a transcription factor and a chaperone. Here we employed different biophysical techniques to perform a deep in vitro characterization of ASR1 as an IDP and showed how both environmental factors and in vivo targets modulate its folding. We report that ASR1 adopts different conformations such as α-helix or polyproline type II in response to environmental changes. Low temperatures and low pH promote the polyproline type II conformation (PII). While NaCl increases PII content and slightly destabilizes α-helix conformation, PEG and glycerol have an important stabilizing effect of α-helix conformation. The binding of Zn2+in the low micromolar range promotes α-helix folding, while extra Zn2+ results in homo-dimerization. The ASR1-DNA binding is sequence specific and dependent on Zn2+. ASR1 chaperone activity does not change upon the structure induction triggered by the addition of Zn2+. Furthermore, trehalose, which has no effect on the ASR1 structure by itself, showed a synergistic effect on the ASR1-driven heat shock protection towards the reporter enzyme citrate synthase (CS). These observations prompted the development of a FRET reporter to sense ASR1 folding in vivo. Its performance was confirmed in Escherichia coli under saline and osmotic stress conditions, representing a promising probe to be used in plant cells. Overall, this work supports the notion that ASR1 plasticity is a key feature that facilitates its response to drought stress and its interaction with specific targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107238PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202808PLOS

Publication Analysis

Top Keywords

intrinsically disordered
8
disordered protein
8
asr1
8
drought stress
8
polyproline type
8
α-helix conformation
8
stress
5
conformational plasticity
4
plasticity intrinsically
4
protein asr1
4

Similar Publications

Unlocking Mesoscopic Disorder in Graphitic Carbon with Spectroelectrochemistry.

Angew Chem Int Ed Engl

December 2024

University of Chicago Division of the Physical Sciences, Chemistry, 929 E 57th St, Gordon Center for Integrative Science, 60637, Chicago, UNITED STATES OF AMERICA.

Intrinsic structural and oxidic defects activate graphitic carbon electrodes towards electrochemical reactions underpinning energy conversion and storage technologies. Yet, these defects can also disrupt the long-range and periodic arrangement of carbon atoms, and thus the characterization of graphitic carbon electrodes necessitate in-situ atomistic differentiation of graphitic regions from mesoscopic bulk disorder. Here, we leverage the combined techniques of in-situ attenuated total reflectance infrared spectroscopy and first-principles calculations to reveal that graphitic carbon electrodes exhibit electric-field dependent infrared activity that is sensitive to the bulk mesoscopic intrinsic disorder.

View Article and Find Full Text PDF

It has become increasingly evident that the conformational distributions of intrinsically disordered proteins or regions are strongly dependent on their amino acid compositions and sequence. To facilitate a systematic investigation of these sequence-ensemble relationships, we selected a set of 16 naturally occurring intrinsically disordered regions of identical length but with large differences in amino acid composition, hydrophobicity, and charge patterning. We probed their conformational ensembles with single-molecule Förster resonance energy transfer (FRET), complemented by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy as well as small-angle X-ray scattering (SAXS).

View Article and Find Full Text PDF

Angiogenesis is imperative for bone regeneration, yet the conventional cytokine therapies have been constrained by prohibitive costs and safety apprehensions. It is urgent to develop a safer and more efficient therapeutic alternative. Herein, utilizing the methodologies of Deep Learning (DL) and Natural Language Processing (NLP), we proposed a paradigm algorithm that amalgamates with a variant, , to deftly discern potential pro-angiogenic peptides from intrinsically disordered regions (IDRs) of 262 related proteins, where are fertile grounds for developing safer and highly promising bioactive peptides.

View Article and Find Full Text PDF

Background: Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized.

Methods: Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment.

View Article and Find Full Text PDF

Electromagnetic Radiation and Biophoton Emission in Neuronal Communication and Neurodegenerative Diseases.

Prog Biophys Mol Biol

December 2024

Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul 34820 Turkey. Electronic address:

The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!