AI Article Synopsis

  • The 1845 Franklin Expedition, consisting of 128 crewmen aboard HMS Erebus and HMS Terror, aimed to discover a northwest passage through uncharted Arctic waters but became stranded in ice off King William Island.
  • After two years frozen in place, the crew, now down to 105 members, attempted a dangerous retreat to seek help but tragically did not survive.
  • Researchers are investigating the impact of lead (Pb) poisoning on the crew's health, testing three hypotheses related to the timing, degree, and effects of Pb exposure compared to a contemporary naval population.

Article Abstract

In the summer of 1845, under the command of Sir John Franklin, 128 officers and men aboard Royal Navy ships HMS Erebus and HMS Terror sailed into Lancaster Sound and entered the waters of Arctic North America. The goal of this expedition was to complete the discovery of a northwest passage by navigating the uncharted area between Barrow Strait and Simpson Strait. Franklin and his crew spent the first winter at Beechey Island, where three crewmen died and were buried. In September 1846, the ships became stranded in ice off the northwest coast of King William Island, where they remained until April 1848. At that time, the crew, reduced to 105, deserted the ships and retreated south along the island's western and southern shores in a desperate attempt to reach the mainland and via the Back River, to obtain aid at a Hudson's Bay Company Post. Sadly, not one individual survived. Previous analyses of bone, hair, and soft tissue samples from expedition remains found that crewmembers' tissues contained elevated lead (Pb) levels, suggesting that Pb poisoning may have contributed to their demise; however, questions remain regarding the timing and degree of exposure and, ultimately, the extent to which the crewmembers may have been impacted. To address this historical question, we investigated three hypotheses. First, if elevated Pb exposure was experienced by the crew during the expedition, we hypothesized that those sailors who survived longer (King William Island vs. Beechey Island) would exhibit more extensive uptake of Pb in their bones and vice versa. Second, we hypothesized that Pb would be elevated in bone microstructural features forming at or near the time of death compared with older tissue. Finally, if Pb exposure played a significant role in the failure of the expedition we hypothesized that bone samples would exhibit evidence of higher and more sustained uptake of Pb than that of a contemporary comparator naval population from the 19th century. To test these hypotheses, we analyzed bone and dental remains of crew members and compared them against samples derived from the Royal Navy cemetery in Antigua. Synchrotron-based high resolution confocal X-ray fluorescence imaging was employed to visualize Pb distribution within bone and tooth microstructures at the micro scale. The data did not support our first hypothesis as Pb distribution within the samples from the two different sites was similar. Evidence of Pb within skeletal microstructural features formed near the time of death lent support to our second hypothesis but consistent evidence of a marked elevation in Pb levels was lacking. Finally, the comparative analysis with the Antigua samples did not support the hypothesis that the Franklin sailors were exposed to an unusually high level of Pb for the time period. Taken all together our skeletal microstructural results do not support the conclusion that Pb played a pivotal role in the loss of Franklin and his crew.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107236PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202983PLOS

Publication Analysis

Top Keywords

high resolution
8
resolution confocal
8
confocal x-ray
8
x-ray fluorescence
8
fluorescence imaging
8
royal navy
8
franklin crew
8
beechey island
8
king william
8
william island
8

Similar Publications

Purpose: Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.

Methods: Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency.

View Article and Find Full Text PDF

This study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons.

View Article and Find Full Text PDF

Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.

View Article and Find Full Text PDF

Background: Corticosteroid receptors, including mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), play important roles in inflammatory pain in the dorsal root ganglion (DRG). Although it is widely known that activating the GR reduces inflammatory pain, it has recently been shown that MR activation contributes to pain and neuronal excitability in rodent studies. Moreover, little is known about the translation of this work to humans, or the mechanisms through which corticosteroid receptors regulate inflammatory pain.

View Article and Find Full Text PDF

Identification of Butyrylcholinesterase-Derived Small Molecule Peptides Indicative of Novichok Nerve Agent Exposures.

Chem Res Toxicol

January 2025

Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway NE, Atlanta, Georgia 30341, United States.

Novichok nerve agents, such as A-230, A-232, and A-234, were classified as Schedule 1 chemicals under the Chemical Weapons Convention (CWC) by the Organisation for the Prohibition of Chemical Weapons (OPCW) following poisoning incidents in 2018. As a result, the production, storage, and use of these chemicals are strictly prohibited by CWC signatory nations. The identification of biomarkers indicating Novichok exposure in humans is crucial for prompt detection and response to potential incidents involving these banned chemical weapons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!