A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Non-invasive imaging shows no evidence of embolism repair after drought in tree species of two genera. | LitMetric

AI Article Synopsis

  • Drought stress leads to blockage of plant xylem conduits by gas emboli, which hinders their hydraulic system, impacting their ability to recover.
  • This study examined the xylem refilling capacity of species from Eucalyptus and Quercus during drought recovery using X-ray microtomography.
  • Findings revealed that none of the plant species effectively refilled embolized xylem vessels, indicating that drought-induced embolism might represent a long-term burden for woody plants' hydraulic systems.

Article Abstract

Drought stress can result in significant impairment of the plant hydraulic system via blockage of xylem conduits by gas emboli. Recovery after drought stress is an essential component of plant survival but is still a poorly understood process. In this study, we examined the capacity of woody species from two genera (Eucalyptus and Quercus) to refill embolized xylem vessels during a cycle of drought and recovery. Observations were made on intact plants of Eucalyptus calmudulensis, E. grandis, E. saligna and Quercus palustris using X-ray microtomography. We found no evidence of an effective xylem refilling mechanism in any of the plant species. Despite rehydration and recovery of plant water potential to near pre-drought levels, embolized vessels were not refilled up to 72 h after rewatering. In E. saligna, water droplets accumulated in previously air-filled vessels for a very small percentage of vessels. However, no instances of complete refilling that would restore embolized vessels to hydraulic function were observed. Our observations suggest that rapid refilling of embolized vessels after drought may not be a wide spread mechanism in woody plants and that embolism formed during drought represents long term cost to the plant hydraulic system.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpy093DOI Listing

Publication Analysis

Top Keywords

embolized vessels
12
species genera
8
drought stress
8
plant hydraulic
8
hydraulic system
8
drought
6
vessels
6
plant
5
non-invasive imaging
4
imaging evidence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: