We reared a Telenomus species from eggs of Bombyx mandarina (Moore) (Lepidoptera: Bombycidae) and Bombyx mori (Linnaeus) (Lepidoptera: Bombycidae) in Japan, and from eggs of B. mandarina in Taiwan. Morphological examination revealed that this Telenomus species is new to science. In this article, we describe it as Telenomus moricolus Matsuo et Hirose, sp. nov. Because B. mandarina is considered to be an ancestor of B. mori, a domestic insect, it is reasonable to assume that B. mandarina is an original host of T. moricolus. This is the second discovery of an egg parasitoid attacking wild and domesticated silkworms, following the first discovery of T. theophilae, a Chinese species. The significance of the discovery of T. moricolus is discussed in relation to examining the effects of host-insect domestication on egg parasitism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080068PMC
http://dx.doi.org/10.1093/jisesa/iey072DOI Listing

Publication Analysis

Top Keywords

lepidoptera bombycidae
12
eggs bombyx
8
bombyx mandarina
8
bombyx mori
8
bombycidae japan
8
telenomus species
8
mandarina
5
discovery
4
discovery species
4
telenomus
4

Similar Publications

Systematics of Apatelodidae Neumoegen & Dyar, 1894 (Lepidoptera: Bombycoidea) based on molecular and morphological data.

Invertebr Syst

October 2024

Departamento de Zoologia, Laboratório de Estudos de Lepidoptera Neotropical, Universidade Federal do Paraná, PO Box 19020, 81531-980, Curitiba, Paraná, Brazil.

Apatelodidae is a family of New World bombycoids distributed mainly in the Neotropical region, with 14 genera, 222 valid species and 8 subspecies. These moths are medium-sized with a wingspan ranging from 2 to 8cm, generally greyish, straw-yellow or reddish-brown, with darker spots and lines on the dorsal side of the wings. We combine adult morphology and molecular data to test, under a probabilistic framework, the monophyly of apatelodid genera and the placement of Tamphana (Bombycidae).

View Article and Find Full Text PDF

Effects of different rearing methods on cocoon silk strength in silkworm Bombyx mori (Lepidoptera: Bombycidae).

J Econ Entomol

December 2024

Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China.

In recent years, the use of artificial diet to rear silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) has advanced rapidly in China. However, significant differences are found in the production and performance of silk from silkworms reared on artificial diet and mulberry leaves, thereby affecting the development of artificial diet usage in sericulture.

View Article and Find Full Text PDF

Larval development of a parasitoid depends on host ecdysteroids.

Insect Biochem Mol Biol

November 2024

School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, China. Electronic address:

Parasitoids often exhibit high flexibility in their development depending on stages of their host at the parasitism, yet little is known about the mechanism underlying such flexibility. In the study, we evaluated the larval development time of the parasitoid Exorista sorbillans (Diptera: Tachinidae) on the lepidopteran model insect Bombyx mori (Lepidoptera: Bombycidae). We found that the development duration of E.

View Article and Find Full Text PDF

Silkmoths (Bombycidae) have a disjunct distribution predominantly in the Southern Hemisphere and Asia. Here we reconstruct the phylogenetic history of the family to test competing hypotheses on their origin and assess how vicariance and long-distance dispersal shaped their current distribution. We sequenced up to 5,074 base pairs from six loci (COI, EF1-α, wgl, CAD, GAPDH, and RpS5) to infer the historical biogeography of Bombycidae.

View Article and Find Full Text PDF

Silkworm seed production is vital for silk farming, requiring precise breeding techniques to optimize yields. In silkworm seed production, precise sex classification is crucial for optimizing breeding and boosting silk yields. A non-destructive approach for sex classification addresses these challenges, offering an efficient alternative that enhances both yield and environmental responsibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!