Sensory hair cells are highly specialized cells that form the basis for our senses of hearing, orientation to gravity, and perception of linear acceleration (head translation in space) and angular acceleration (head rotation). In many species of fish and aquatic amphibians, hair cells mediate perception of water movement through the lateral line system, and electroreceptors derived from hair cell precursors mediate electric field detection. In tunicates, cells of the mechanosensory coronal organ on the incurrent siphon meet the structural, functional, and developmental criteria to be described as hair cells, and they function to deflect large particles from entering the animal. The past two decades have witnessed significant breakthroughs in our understanding of hair cell biology and how their specialized structures influence their functions. This symposium combines the approaches of developmental biology, evolutionary biology, and physiology to share the gains of recent research in understanding hair cell function in different model systems. We brought together researchers working on sensory hair cells in organisms spanning the chordates in order to examine the depth and breadth of hair cell evolution. It is clear that these specialized cells serve a range of functions in different animals, due to evolutionary tinkering with a basic specialized cell type. This collection of papers will serve to mark the progress that has been made in this field and also stimulate the next wave of progress in this exciting field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104703 | PMC |
http://dx.doi.org/10.1093/icb/icy070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!