We present a direct manipulation technique that allows material scientists to interactively highlight relevant parameterized simulation instances located in dimensionally reduced spaces, enabling a user-defined understanding of a continuous parameter space. Our goals are two-fold: first, to build a user-directed intuition of dimensionally reduced data, and second, to provide a mechanism for creatively exploring parameter relationships in parameterized simulation sets, called ensembles. We start by visualizing ensemble data instances in dimensionally reduced scatter plots. To understand these abstract views, we employ user-defined virtual data instances that, through direct manipulation, search an ensemble for similar instances. Users can create multiple of these direct manipulation queries to visually annotate the spaces with sets of highlighted ensemble data instances. User-defined goals are therefore translated into custom illustrations that are projected onto the dimensionally reduced spaces. Combined forward and inverse searches of the parameter space follow naturally allowing for continuous parameter space prediction and visual query comparison in the context of an ensemble. The potential for this visualization technique is confirmed via expert user feedback for a shock physics application and synthetic model analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2018.2865051 | DOI Listing |
Nat Commun
January 2025
Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Materials with full and fractional skyrmions are important for fundamental studies and can be applied as information carriers for applications in spintronics or skyrmionics. However, creation, direct optical observation and manipulation of different skyrmion textures remain challenging. Besides, how the transformation of skyrmion textures directs the dynamics of colloids is not well understood.
View Article and Find Full Text PDFOrg Lett
January 2025
Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
Alternating current electrolysis has emerged as a promising technique for addressing challenging redox reactions that are otherwise difficult or impossible for direct current electrolysis. Under mild and transition-metal-free reaction conditions, a general electrochemical denitrative cyclization of nitroarenes was developed to access various cyclic sulfone-containing derivatives of biological significance. The key to success lies in the facile manipulation of multiple redox events upon rapid alternating polarity switching to enhance the selectivity and efficiency.
View Article and Find Full Text PDFmSphere
January 2025
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.
View Article and Find Full Text PDFWe investigate the ultrafast electron correlation effects during non-sequential double ionization (NSDI) of argon subjected to a combined femtosecond field composed of counter-rotating two-color circularly polarized (TCCP) pulse laser using a 3D classical ensemble model (CEM). Our simulation results reveal that manipulation of the carrier-envelope phase (CEP) of the external driving field modulates the dynamical behavior of the two electrons, resulting in a notable sensitivity of their momentum distribution to the relative phase of two components of the counter-rotating TCCP field. Through inversion analysis, we uncover the capability to direct electrons toward a single direction, thereby facilitating focused ion-electron collisions on the attosecond timescale.
View Article and Find Full Text PDFWe analyze the single-photon band structure and the transport of a single photon in a one-dimensional coupled-spinning-resonator chain. The time-reversal symmetry of the resonators chain is broken by the spinning of the resonators, instead of external or synthetic magnetic field. Two nonreciprocal single-photon band gaps can be obtained in the coupled-spinning-resonator chain, whose width depends on the angular velocity of the spinning resonator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!