Methanogenic bioreactors have been applied to treat purified terephthalic acid (PTA) wastewater containing complex aromatic compounds, such as terephthalic acid, para-toluic acid and benzoic acid. This study characterized the interaction of microbial populations in 42 samples obtained from 10 PTA-degrading methanogenic bioreactors. Approximately, 54 dominant populations (11 methanogens, 8 syntrophs and 35 functionally unknown clades) that represented 73.9% of total 16S rRNA gene iTag sequence reads were identified. Co-occurrence analysis based on the abundance of dominant OTUs showed two non-overlapping networks centred around aromatic compound- (group AR: Syntrophorhabdaceae, Syntrophus and Pelotomaculum) and fatty acid- (group FA: Smithella and Syntrophobacter) degrading syntrophs. Group AR syntrophs have no direct correlation with hydrogenotrophic methanogens, while those from group FA do. As degradation of aromatic compounds has a wider thermodynamic window than fatty acids, Group AR syntrophs may be less influenced by fluctuations in hydrogenotrophic methanogen abundance or may non-specifically interact with diverse methanogens. In both groups, network analysis reveals full-scale- and lab-scale-specific uncultivated taxa that may mediate interactions between syntrophs and methanogens, suggesting that those uncultivated taxa may support the degradation of aromatic compounds through uncharted ecophysiological traits. These observations suggest that organisms from multiple niches orchestrate their metabolic capacity in multiple interaction networks to effectively degrade PTA wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1758-2229.12689 | DOI Listing |
Environ Res
December 2024
Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel. Electronic address:
In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved.
View Article and Find Full Text PDFWater Sci Technol
December 2024
Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Research Center of Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
Anaerobic treatment of sulfur-rich wastewater is challenging because sulfide greatly inhibits the activity of anaerobic microorganisms, especially methanogenic archaea. We developed an internal phase-separated reactor (IPSR) that removed sulfide prior to methanogenesis by gas stripping using biogas produced in the reactor. The IPSR was fed with synthetic wastewater containing a very high sulfide concentration of up to 6,000 mg S L with a chemical oxygen demand (COD) of 30,000 mg L.
View Article and Find Full Text PDFWater Res
December 2024
Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China. Electronic address:
Anaerobic digestion faces numerous challenges, including high CO content in biogas and volatile fatty acids (such as propionate) accumulation in digestate. To address these issues, an up-flow dual-chamber electrocatalytic anaerobic bioreactor (UF-DC-EAB) was developed to enhance propionate degradation through microbial symbiosis while improving biogas quality via CO electromethanogenesis. Under the extreme conditions with propionate as the primary carbon source at 6-h HRT, the UF-DC-EAB achieved a propionate removal efficiency of 72.
View Article and Find Full Text PDFEng Microbiol
March 2024
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
In this study, a combined system consisting of an anaerobic membrane bioreactor (AnMBR) and flow-through biofilm reactor/CANON (FTBR/CANON) was developed to simultaneously remove carbon and nitrogen from synthetic livestock wastewater. The average removal efficiencies of total nitrogen (TN) were 64.2 and 76.
View Article and Find Full Text PDFEnviron Microbiol Rep
December 2024
Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!