Porcine follicle-stimulating hormone (pFSH), comprising α and β subunits, is commonly used to induce superovulation in domestic animals in assisted reproduction technologies; however, the practical application of pFSH is inhibited by the limited efficiency of its production. Recombinant yeast-derived FSH offers a practical alternative; however, the heterologous expression efficiency remains disappointingly low. To improve FSH production in Pichia pastoris, a series of molecular strategies, together with fermentation optimization, were tested in the present study. By comparing clones of the Mut phenotype strain, it was observed that the yield of soluble pFSH increased by approximately 96% in clones of the Mut phenotype strain. The protein levels of soluble pFSHβ, which confers biological specificity, increased by approximately 143 and 22% after two kinds of codon optimization strategies, respectively. Moreover, compared with the production of soluble pFSHβ and SUMO-pFSHβ, the production of soluble protein HSA-pFSHβ was significantly improved. Furthermore, the optimum pH and methanol concentration for expressing soluble HSA-pFSH in strain H3-3 were determined as 5.0-6.0 and 1.5-2% in shake-flask, and the yield of soluble HSA-pFSH could reach 40.8 mg/l after purification. In vitro bioactivity assays showed that recombinant HSA-pFSH could efficiently stimulate cAMP synthesis in HEK293 cells expressing porcine FSHR. In conclusion, our results demonstrated that the application of phenotypic selection of aox1 mutants, combined with codon optimization, the choice of fusion partners, and fermentation optimization, considerably increased the yield of pFSH in supernatant of P. pastoris and thus provided a valuable reference for the large-scale recombinant expression of pFSH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-018-9260-6 | DOI Listing |
Protein Sci
February 2025
Cell Physiology and Molecular Biophysics Department, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
Purifying membrane proteins has been the limiting step for studying their structure and function. The challenges of the process include the low expression levels in heterologous systems and the requirement for their biochemical stabilization in solution. The human voltage-gated proton channel (hH1) is a good example of that: the published protocols to express and purify hH1 produce low protein quantities at high costs, which is an issue for systematically characterizing its structure and function.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, PR China. Electronic address:
In this study, we successfully integrated the full-length genome of the cyanophage PP into the non-host cyanobacterium Synechococcus elongatus PCC 7942, facilitated by conjugation via Escherichia coli. To address the challenge posed by the toxic open reading frames (ORFs) of PP in E. coli, we first identified and characterized three toxic ORFs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China. Electronic address:
Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).
View Article and Find Full Text PDFViruses
January 2025
Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou 311100, China.
, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of remains limited. In this study, plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China.
This study aims to identify the function of the () gene in the kidneys of . CYP2E1 is a significant metabolic enzyme involved in the metabolism of various endogenous and exogenous compounds and is associated with the occurrence and progression of multiple diseases. Given 's ability to survive in the extremely arid , we hypothesize that CYP2E1 in its kidneys plays a crucial role in adaptability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!