Fusicocca-2,10(14)-diene (FCdiene) is a diterpene which is interesting as a precursor of the anti-cancer drug fusicoccin A and therefore for pharmaceutical applications. Production of FCdiene using a genetically modified Saccharomyces cerevisiae has been previously demonstrated with batch cultivations with a product concentration up to 10 mg/L. However, it is widely known that fed-batch processes can significantly improve product titer in yeast fermentations. This study focuses on the establishment of fed-batch fermentation for FCdiene production because fed-batch cultivations using FeedBeads indicated that limiting glucose supply could increase yields of biomass (1.07 g/g instead of 0.20 g/g) and FCdiene (21.54 mg/g instead of 9.74 mg/g) in shake flask scale and may have implications for larger scale processes. We implemented a new exponential glucose feed profile in a 1.8 L stirred tank reactor. This reduced overfeeding and the consequent, ethanol production. As a result improvements in cell concentrations up to 246% could be achieved and FCdiene yield increased up to 2.8X in the first 28 h. FCdiene concentration reached 161 mg/L and 320 mg/L at 44 h. Fed-batch and batch mode were combined to examine dynamics of bi-modal cultivation where a fed-batch phase was used for biomass production and a batch phase used for FCdiene production potentially supported by ethanol consumption as reported on production of betulinic acid. The present study highlights the potential of process development improvements which increase high-value heterologous diterpene yields from S. cerevisiae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104463 | PMC |
http://dx.doi.org/10.1186/s13568-018-0662-8 | DOI Listing |
PLoS One
January 2025
Facultad de Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain.
The budding yeast Xrn1 protein shuttles between the nucleus, where it stimulates transcription, and the cytoplasm, where it executes the major cytoplasmic mRNA decay. In the cytoplasm, apart from catalyzing 5'→3' decay onto non translated mRNAs, Xrn1 can follow the last translating ribosome to degrade the decapped mRNA template, a process known as "cotranslational mRNA decay". We have previously observed that the import of Xrn1 to the nucleus is required for efficient cytoplasmic mRNA decay.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Biology, Ball State University, Muncie, Indiana.
Degradation of aberrant, excess, and regulatory proteins at the endoplasmic reticulum (ER) is a conserved feature of eukaryotic cells, disruption of which contributes to disease. While remarkable progress has been made in recent years, mechanisms and genetic requirements for ER-Associated Degradation (ERAD) remain incompletely understood. We recently conducted a screen for genes required for turnover of a model ER translocon-associated substrate of the Hrd1 ubiquitin ligase in .
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.
The yeast buds at sites pre-determined by cortical landmarks deposited during prior budding. During mating between haploid cells in the lab, external pheromone cues override the cortical landmarks to drive polarization and cell fusion. By contrast, in haploid gametes (called spores) produced by meiosis, a pre-determined polarity site drives initial polarized morphogenesis independent of mating partner location.
View Article and Find Full Text PDFFolia Microbiol (Praha)
January 2025
Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
Ginsenoside Rh2(S) is well-known for its therapeutic potential against diverse conditions, including some cancers, inflammation, and diabetes. The enzymatic activity of uridine diphosphate glycosyltransferase 51 (UGT51) from Saccharomyces cerevisiae plays a pivotal role in the glycosylation process between UDP-glucose (donor) and protopanaxadiol (acceptor), to form ginsenoside Rh2. However, the catalytic efficiency of the UGT51 has remained a challenging task.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany.
Improving ale or lager yeasts by conventional breeding is a non-trivial task. Domestication of lager yeasts, which are hybrids between Saccharomyces cerevisiae and Saccharomyces eubayanus, has led to evolved strains with severely reduced or abolished sexual reproduction capabilities, due to, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!