Mechanisms of ischemic preconditioning have been extensively studied in gray matter. However, an ischemic episode affects both the gray matter (GM) and white matter (WM) portions of the brain. Inhibition of mitochondrial fission is one of the mechanisms of preconditioning neuronal cell bodies against ischemia. Although axons are anatomical extensions of neuronal cell bodies, injury mechanisms differ between GM and WM. Indeed, axonal dysfunction is responsible for much of the disability associated with clinical deficits observed after stroke; however, the signaling process underlying preconditioning remains unexplored in axons. Using mouse optic nerve, which is a pure isolated WM tract, we show that mitochondria in myelinated axons undergo rapid and profuse fission during oxygen glucose deprivation (OGD) that is mediated by translocation of cytoplasmic Dynamin Related Protein-1 (Drp-1) to mitochondria. OGD-induced mitochondrial fission correlates with reduced mitochondrial motility and loss of axon function. Mitochondrial fragmentation and loss of motility become permanent during the recovery period. Inhibiting mitochondrial fission by administering mitochondrial division inhibitor-1 (Mdivi-1) during OGD preserves mitochondrial shape and motility and promotes axon function recovery. In contrast, preconditioning WM by applying Mdivi-1 only before OGD fails to conserve mitochondrial shape or motility and fails to benefit axon function. Our findings suggest that inhibition of mitochondrial fission during ischemia promotes axon function recovery, but is not sufficient to precondition WM against ischemia. These results raise caution in that approaches to preconditioning neuronal cell bodies may not successfully translate into functional improvement following ischemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6101249PMC

Publication Analysis

Top Keywords

mitochondrial fission
16
axon function
16
neuronal cell
12
cell bodies
12
mitochondrial
10
white matter
8
gray matter
8
inhibition mitochondrial
8
preconditioning neuronal
8
mdivi-1 ogd
8

Similar Publications

A Comprehensive Review of Arsenic-Induced Neurotoxicity: Exploring the Role of Glial Cell Pathways and Mechanisms.

Chemosphere

December 2024

Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

The review aims to examine the neurotoxic effects of arsenic, particularly exploring the roles of glial cells-astrocytes, microglia, and oligodendrocytes, amid its widespread environmental contamination and impact on cognitive impairments. It highlights the role of altered neurotrophin and growth factor signaling in disrupting neuronal health and cognitive performance. It elucidates the intricate interactions between oxidative stress, DNA damage, neurotransmitter disruption, and cellular signaling alterations, underscoring the vital importance of the glial cells.

View Article and Find Full Text PDF

Cardiomyocyte-specific Piezo1 deficiency mitigates ischemia-reperfusion injury by preserving mitochondrial homeostasis.

Redox Biol

December 2024

Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK. Electronic address:

Ca overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function during myocardial I/R injury.

View Article and Find Full Text PDF

Hyalomma ticks are important vectors of pathogens affecting human and animal health. This study aimed to assess the outputs of three molecular markers (16S, 12S rRNA, and COI) for accurate tick species molecular identification, genetic diversity assessment, and phylogenetic positioning of Hyalomma tick specimens from Tunisia. A total of 20 tickspecimens were collected from different hosts including cattle, camels, and turtles in nine Tunisian governorates.

View Article and Find Full Text PDF

Atmospheric particulate matter (PM) is one of the most dangerous air pollutants of anthropogenic origin; it consists of a heterogeneous mixture of inorganic and organic components, including transition metals and polycyclic aromatic hydrocarbons. Although previous studies have focused on the effects of exposure to highly concentrated PM on the respiratory and cardiovascular systems, emerging evidence supports a significant impact of air pollution on the gastrointestinal (GI) tract by linking exposure to external stressors with conditions such as appendicitis, colorectal cancer, and inflammatory bowel disease. In general, it has been hypothesized that the main mechanism involved in PM toxicity consists of an inflammatory response and this has also been suggested for the GI tract.

View Article and Find Full Text PDF

Mimosa tenuiflora, popularly known as "Jurema-Preta", is a perennial tree or shrub native to the tropical regions of the Americas, particularly among Afro-Brazilian and Indigenous Brazilian communities. Known for producing N,N-Dimethyltryptamine, a psychedelic compound with profound psychological effects, Jurema-Preta has been studied for its therapeutic potential in mental health. This study offers a comprehensive analysis of the plastid (ptDNA) and mitochondrion (mtDNA) genomes of M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!