Characterization of Ti-doped TiO based composite electrode for lithium polymer secondary batteries.

Nanotechnology

Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea. Department of Material Science and Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.

Published: November 2018

Ti-doped TiO nanoparticles were synthesized and fabricated into a composite electrode as an anode material for lithium polymer batteries. The composite electrode contained polymer electrolyte (PE) to reduce interfacial resistance between the solid PE and electrode. The effect of PE content on the composite electrodes was analyzed by GITT, and it was found that PE significantly influenced lithium storage as well as internal resistance. A composite electrode was fabricated into a pouch type cell and exhibited a capacity of 160 mAh g in the bent state, demonstrating the applicability of the Ti-doped TiO based composite electrode in lithium polymer secondary batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aadc6fDOI Listing

Publication Analysis

Top Keywords

composite electrode
20
ti-doped tio
12
lithium polymer
12
tio based
8
based composite
8
electrode lithium
8
polymer secondary
8
secondary batteries
8
composite
6
electrode
6

Similar Publications

Impact of the Electrode Material on the Performance of Light-Emitting Electrochemical Cells.

ACS Appl Mater Interfaces

January 2025

The Organic Photonics and Electronics Group, Department of Physics, Umeå University, SE-90187 Umeå, Sweden.

Light-emitting electrochemical cells (LECs) are promising candidates for fully solution-processed lighting applications because they can comprise a single active-material layer and air-stable electrodes. While their performance is often claimed to be independent of the electrode material selection due to the in situ formation of electric double layers (EDLs), we demonstrate conceptually and experimentally that this understanding needs to be modified. Specifically, the exciton generation zone is observed to be affected by the electrode work function.

View Article and Find Full Text PDF

In this work, within the framework of a self-consistent model of arc discharge, a simulation of plasma parameters in a mixture of argon and methane was carried out, taking into account the evaporation of the electrode material in the case of a refractory and non-refractory cathode. It is shown that in the case of a refractory tungsten cathode, almost the same methane conversion rate is observed, leading to similar values in the density of the main methane conversion products (C, C, H) at different values of the discharge current density. However, with an increase in the current density, the evaporation rate of copper atoms from the anode increases, and a jump in the - characteristic is observed, caused by a change in the plasma-forming ion.

View Article and Find Full Text PDF

The NiCoO Nanosheets@Carbon fibers composites have been successfully synthesized by a facile co-electrodeposition process. The mesoporous NiCoO nanosheets aligned vertically on the surface of carbon fibers and crosslinked with each other, producing loosely porous nanostructures. These hybrid composite electrodes exhibit high specific capacitance in a three-electrode cell.

View Article and Find Full Text PDF

MOF-derived Carbon-Based Materials for Energy-Related Applications.

Adv Mater

January 2025

State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.

New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal-organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs.

View Article and Find Full Text PDF

The optimized composition and precisely tailored structure configuration play critical roles in enhancing the catalytic reaction kinetics. Here we report a distinctive core@satellite strategy for designing the advanced platinum-nickel@platinum-nickel-copper-cobalt-indium high-entropy alloy nanowires (PtNi@HEA NWs) as efficient bifunctional catalysts in the proton exchange membrane fuel cell. Impressively, the PtNi@HEA NWs/C shows 19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!