Accurate Estimation of In Vivo Inhibition Constants of Inhibitors and Fraction Metabolized of Substrates with Physiologically Based Pharmacokinetic Drug-Drug Interaction Models Incorporating Parent Drugs and Metabolites of Substrates with Cluster Newton Method.

Drug Metab Dispos

Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo (K.Y., K.M., H.K.), and Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama (K.Y., A.K.), Japan

Published: November 2018

The accurate estimation of "in vivo" inhibition constants ( ) of inhibitors and fraction metabolized ( ) of substrates is highly important for drug-drug interaction (DDI) prediction based on physiologically based pharmacokinetic (PBPK) models. We hypothesized that analysis of the pharmacokinetic alterations of substrate metabolites in addition to the parent drug would enable accurate estimation of in vivo and Twenty-four pharmacokinetic DDIs caused by P450 inhibition were analyzed with PBPK models using an emerging parameter estimation method, the cluster Newton method, which enables efficient estimation of a large number of parameters to describe the pharmacokinetics of parent and metabolized drugs. For each DDI, two analyses were conducted (with or without substrate metabolite data), and the parameter estimates were compared with each other. In 17 out of 24 cases, inclusion of substrate metabolite information in PBPK analysis improved the reliability of both and Importantly, the estimated for the same inhibitor from different DDI studies was generally consistent, suggesting that the estimated from one study can be reliably used for the prediction of untested DDI cases with different victim drugs. Furthermore, a large discrepancy was observed between the reported in vitro and the in vitro estimates for some inhibitors, and the current in vivo estimates might be used as reference values when optimizing in vitro-in vivo extrapolation strategies. These results demonstrated that better use of substrate metabolite information in PBPK analysis of clinical DDI data can improve reliability of top-down parameter estimation and prediction of untested DDIs.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.118.081828DOI Listing

Publication Analysis

Top Keywords

accurate estimation
12
substrate metabolite
12
estimation vivo
8
inhibition constants
8
constants inhibitors
8
inhibitors fraction
8
fraction metabolized
8
metabolized substrates
8
physiologically based
8
based pharmacokinetic
8

Similar Publications

Application of Machine Learning to Predict CO Emissions in Light-Duty Vehicles.

Sensors (Basel)

December 2024

Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.

Climate change caused by greenhouse gas (GHG) emissions is an escalating global issue, with the transportation sector being a significant contributor, accounting for approximately a quarter of all energy-related GHG emissions. In the transportation sector, vehicle emissions testing is a key part of ensuring compliance with environmental regulations. The Vehicle Certification Agency (VCA) of the UK plays a pivotal role in certifying vehicles for compliance with emissions and safety standards.

View Article and Find Full Text PDF

Initial Pose Estimation Method for Robust LiDAR-Inertial Calibration and Mapping.

Sensors (Basel)

December 2024

Department of Intelligent Systems & Robotics, Chungbuk National University, Cheongju 28644, Republic of Korea.

Handheld LiDAR scanners, which typically consist of a LiDAR sensor, Inertial Measurement Unit, and processor, enable data capture while moving, offering flexibility for various applications, including indoor and outdoor 3D mapping in fields such as architecture and civil engineering. Unlike fixed LiDAR systems, handheld devices allow data collection from different angles, but this mobility introduces challenges in data quality, particularly when initial calibration between sensors is not precise. Accurate LiDAR-IMU calibration, essential for mapping accuracy in Simultaneous Localization and Mapping applications, involves precise alignment of the sensors' extrinsic parameters.

View Article and Find Full Text PDF

Dynamic Boundary Estimation of Suspended Sediment Plume Benefit by the Autonomous Underwater Vehicle Sensing.

Sensors (Basel)

December 2024

Key Laboratory of System Control and Information Processing, Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China.

The suspended sediment plume generated in the deep-sea mining process significantly impacts the marine environment and seabed ecosystem. Accurate boundary estimation can effectively monitor the scope of environmental impact, guiding mining operations to prevent ecological damage. In this paper, we propose a dynamic boundary estimation approach for the suspended sediment plume, leveraging the sensing capability of the Autonomous Underwater Vehicles (AUVs).

View Article and Find Full Text PDF

Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control.

View Article and Find Full Text PDF

Human pose estimation is an important research direction in the field of computer vision, which aims to accurately identify the position and posture of keypoints of the human body through images or videos. However, multi-person pose estimation yields false detection or missed detection in dense crowds, and it is still difficult to detect small targets. In this paper, we propose a Mamba-based human pose estimation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!