Epstein-Barr virus nuclear antigen 3C (EBNA3C) is a well-defined repressor of host gene expression in B cells transformed by Epstein-Barr virus (EBV) that cooperates with various cellular factors. It is established that EBNA3C interacts with the cellular factor RBPJ (RBP-Jκ or CBF1) through two distinct motifs: the TFGC motif, also called the homology domain (HD) motif, and the VWTP motif. In this study, we investigated the role of each motif in EBNA3C transcriptional repression activity by using two novel recombinant viruses with single RBPJ interaction motifs mutated (EBNA3C HDmut and EBNA3C W227S). Infection of primary B cells with either of these recombinant EBVs led to the successful establishment of lymphoblastoid cell lines (LCLs). Gene expression analysis showed that full repression of EBNA3C target genes is not achieved by EBNA3C HDmut compared to that with EBNA3C W227S or the EBNA3C wild type (WT). Focusing on the well-characterized EBNA3C-repressed genes , , and , we investigated the mechanism of EBNA3C-mediated transcriptional repression. Chromatin immunoprecipitation (ChIP) analysis indicated that EBNA3C HDmut is still able to recruit Polycomb proteins BMI1 and SUZ12 to as efficiently as EBNA3C WT does, leading to the full deposition of the repressive histone mark H3K27me3. However, we found that the activation-associated chromatin mark H3K4me3 is highly enriched at EBNA3C target genes in LCLs expressing EBNA3C HDmut. We show here that EBNA3C interacts with the histone lysine demethylase KDM2B and that this interaction is important for H3K4me3 removal and for the EBNA3C-mediated repression of and the locus. EBV is a virus associated with human cancers and is well known for its ability to transform B lymphocytes into continuously proliferating lymphoblastoid cell lines. EBNA3C is considered an oncoprotein and has been shown to be essential for B cell transformation by EBV. EBNA3C is well characterized as a viral transcription factor, but very little is known about its mechanisms of action. In the present study, we demonstrate that removal of the activating histone mark H3K4me3 and deposition of the repressive mark H3K27me3 by EBNA3C on are achieved by at least two distinct mechanisms. Furthermore, we discovered that EBNA3C interacts with the lysine demethylase KDM2B and that this interaction is important for its transcriptional repressive function. The findings in this study provide new insights into the mechanism used by the oncoprotein EBNA3C to repress cellular target genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189496PMC
http://dx.doi.org/10.1128/JVI.01362-18DOI Listing

Publication Analysis

Top Keywords

ebna3c
19
ebna3c hdmut
16
epstein-barr virus
12
lysine demethylase
12
demethylase kdm2b
12
ebna3c interacts
12
target genes
12
virus nuclear
8
nuclear antigen
8
histone lysine
8

Similar Publications

Interpreting the role of epigallocatechin-3-gallate in Epstein-Barr virus infection-mediated neuronal diseases.

Folia Microbiol (Praha)

January 2025

Infection Bioengineering Group, POD 1B-602, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.

The increasing prevalence of neurodegenerative diseases is a formidable task due to their multifactorial causation and treatments limited to disease maintenance and progression. Epstein-Barr virus (EBV) is reported to be involved with neuropathologies; previous studies from our group suggested the effective binding of epigallocatechin-3-gallate (EGCG) with EBV nuclear antigen 1 (EBNA1) and glycoprotein H (gH). Therefore, in the current study, we evaluated the anti-EBV effect of ECGG on the neuronal cells.

View Article and Find Full Text PDF

Ubiquitin-Mediated Effects on Oncogenesis during EBV and KSHV Infection.

Viruses

September 2024

Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.

Article Synopsis
  • The Epstein-Barr Virus (EBV) and Kaposi Sarcoma-associated Herpesvirus (KSHV) are both cancer-causing viruses that utilize host cellular mechanisms to promote their replication and the development of cancer.
  • EBV infects around 90% of people globally and is linked to several cancers like Burkitt lymphoma and nasopharyngeal carcinoma, manipulating ubiquitin pathways to enhance cell proliferation and evade apoptosis.
  • KSHV, responsible for Kaposi's Sarcoma, also employs similar ubiquitin-mediated strategies to degrade tumor suppressors and evade immune responses, making both viruses significant in understanding viral oncogenesis and potential cancer therapies.
View Article and Find Full Text PDF

Epstein-Barr virus (EBV) manipulates the ubiquitin-proteasome system and regulators of Bcl-2 family to enable the persistence of the virus and survival of the host cells through the expression of viral proteins in distinct latency patterns. We postulate that the combination of bortezomib (proteasome inhibitor) and venetoclax (Bcl-2 inhibitor) [bort/venetoclax] will cause synergistic killing of post-transplant lymphoproliferative disorder (PTLD) through targeting the pro-survival function of latent viral proteins such as latent membrane protein-1 (LMP-1) and EBV nuclear antigen-3C (EBNA-3C). Bort/venetoclax could synergistically kill spontaneous lymphoblastoid cell lines (sLCLs) derived from patients with PTLD and EBV-associated hemophagocytic lymphohistiocytosis by inducing DNA damage response, apoptosis and G1-S cell cycle arrest in a ROS-dependent manner.

View Article and Find Full Text PDF

The F-box E3 ligase protein FBXO11 regulates EBNA3C-associated degradation of BCL6.

J Virol

July 2024

The Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Unlabelled: Most mature B-cell malignancies originate from the malignant transformation of germinal center (GC) B cells. The GC reaction appears to have a role in malignant transformation, in which a major player of the GC reaction is BCL6, a key regulator of this process. We now demonstrate that BCL6 protein levels were dramatically decreased in Epstein-Barr virus (EBV)-positive lymphoblastoid cell lines and Burkitt's lymphoma cell lines.

View Article and Find Full Text PDF

Objectives: We aimed to examine the presence of EBV, EBV strains, and variants among 3 oral conditions including normal oral mucosa (NOM), oral potentially malignant disorders/oral cancer (OPMDs/OC) and non-OPMDs/OC in a group of Thais.

Material And Methods: Oral exfoliated cells were obtained from 315 participants living in the northeastern and central regions of Thailand. The participants were divided into 3 groups encompassing the NOM, the OPMDs/OC and the non-OPMDs/OC groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!