Transcriptome Analysis Identifies a Zinc Finger Protein Regulating Starch Degradation in Kiwifruit.

Plant Physiol

Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China

Published: October 2018

Ripening, including softening, is a critical factor in determining the postharvest shelf-life of fruit and is controlled by enzymes involved in cell wall metabolism, starch degradation, and hormone metabolism. Here, we used a transcriptomics-based approach to identify transcriptional regulatory components associated with texture, ethylene, and starch degradation in ripening kiwifruit (). Twelve differentially expressed structural genes, including seven involved in cell wall metabolism, four in ethylene biosynthesis, and one in starch degradation, and 14 transcription factors (TFs) induced by exogenous ethylene treatment and inhibited by the ethylene signaling inhibitor 1-methylcyclopropene were identified as changing in transcript levels during ripening. Moreover, analysis of the regulatory effects of differentially expressed genes identified a zinc finger TF, DNA BINDING WITH ONE FINGER (AdDof3), which showed significant transactivation on the (β-amylase) promoter. AdDof3 interacted physically with the promoter, and stable overexpression of resulted in lower starch content in transgenic kiwifruit leaves, suggesting that is a key gene for starch degradation. Moreover, transient overexpression analysis showed that AdDof3 up-regulated expression in kiwifruit. Thus, transcriptomics analysis not only allowed the prediction of some ripening-regulating genes but also facilitated the characterization of a TF, AdDof3, and a key structural gene, , in starch degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181057PMC
http://dx.doi.org/10.1104/pp.18.00427DOI Listing

Publication Analysis

Top Keywords

starch degradation
24
zinc finger
8
involved cell
8
cell wall
8
wall metabolism
8
differentially expressed
8
gene starch
8
starch
7
degradation
6
transcriptome analysis
4

Similar Publications

Understanding the triacylglycerol-based carbon anabolic differentiation in Cyperus esculentus and Cyperus rotundus developing tubers via transcriptomic and metabolomic approaches.

BMC Plant Biol

December 2024

College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.

Background: Yellow nutsedge (Cyperus esculentus, known as 'YouShaDou' in China, YSD) and purple nutsedge (Cyperus rotundus, known as 'XiangFuZi' in China, XFZ), closely related Cyperaceae species, exhibit significant differences in triacylglycerol (TAG) accumulation within their tubers, a key factor in carbon flux repartitioning that highly impact the total lipid, carbohydrate and protein metabolisms. Previous studies have attempted to elucidate the carbon anabolic discrepancies between these two species, however, a lack of comprehensive genome-wide annotation has hindered a detailed understanding of the underlying molecular mechanisms.

Results: This study utilizes transcriptomic analyses, supported by a comprehensive YSD reference genome, and metabolomic profiling to uncover the mechanisms underlying the major carbon perturbations between the developing tubers of YSD and XFZ germplasms harvested in Yunnan province, China, where the plant biodiveristy is renowned worldwide and may contain more genetic variations relative to their counterparts in other places.

View Article and Find Full Text PDF

To investigate the structural and functional similarities of microbial communities in burnt-sweetness alcoholized tobacco as a function of distance from the equator and their effects on tobacco quality, we sampled alcoholized tobacco from Chenzhou, Hunan Province, China and from Brazil and Zimbabwe, which are also burnt-sweetness-type tobacco producing regions, and performed high-throughput sequencing of tobacco bacterial and fungal communities along with an analysis of the main chemical constituents of the tobacco to analyze differences in the quality of the tobacco and similarities in the structure of the microbial communities. The total nitrogen, nicotine and starch contents of Chenzhou tobacco were greater than those of Brazilian and Zimbabwean tobacco, and the total sugar and reducing sugar contents of the Brazilian and Zimbabwean tobacco were greater than those of the Chenzhou tobacco (P < 0.05).

View Article and Find Full Text PDF

Forage sources in total mixed rations on rumen fermentation, gut fill, and development of the gastrointestinal tract of dairy calves.

Sci Rep

December 2024

Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, n 11, Piracicaba, SP, 1341-900, Brazil.

The inclusion of forage sources in calf diets is often discussed, and the main point debated is whether the inclusion level, particle size, source, and how forage is offered may impact gut fill and reduce body weight gain, as well as impact gastrointestinal tract development. This study aimed to determine the effects of feeding forage sources with different qualities on rumen fermentation, gut fill, and development of the gastrointestinal tract of dairy calves. Forty-eight Holstein dairy calves were blocked according to sex and body weight (BW) at 28 days of life and randomly assigned to 1 of 4 dietary treatments.

View Article and Find Full Text PDF

Deep sea microbial communities play a significant role in global biogeochemical processes. However, the depth-wise metabolic potential of microbial communities in hydrothermally influenced Central Indian Ridge (CIR) and Southwest Indian Ridge (SWIR) remains elusive. In this study, a comprehensive functional microarray-based approach was used to understand factors influencing the metabolic potential of microbial communities and depth-driven differences in microbial functional gene composition in CIR and SWIR.

View Article and Find Full Text PDF

We investigated the effects of exogenous abscisic acid (ABA) on grain filling, starch accumulation, and endogenous hormones in maize (both the heat-tolerant maize variety Zhengdan 958 (ZD958) and the heat-sensitive variety Xianyu 335 (XY335)) under early post-anthesis high temperature stress by simulating high temperature stress for a period of 6 to 12 days post-anthesis in 2022 and 2023. There were three treatments: spraying water at ambient temperature as the control, spraying water at high temperature, and spraying ABA at high temperature. The results showed that early post-anthesis high temperature stress resulted in a significant reduction in grain weight and yield in maize, with XY335 showing a greater reduction than ZD958.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!