Background: Histone deacetylases (HDACs) play a critical role in modulating myocardial protection and cardiomyocyte survivals. However, Specific HDAC isoforms in mediating myocardial ischemia/reperfusion injury remain currently unknown. We used cardiomyocyte-specific overexpression of active HDAC4 to determine the functional role of activated HDAC4 in regulating myocardial ischemia and reperfusion in isovolumetric perfused hearts.
Methods: In this study, we created myocyte-specific active HDAC4 transgenic mice to examine the functional role of active HDAC4 in mediating myocardial I/R injury. Ventricular function was determined in the isovolumetric heart, and infarct size was determined using tetrazolium chloride staining.
Results: Myocyte-specific overexpressing activated HDAC4 in mice promoted myocardial I/R injury, as indicated by the increases in infarct size and reduction of ventricular functional recovery following I/R injury. Notably, active HDAC4 overexpression led to an increase in LC-3 and active caspase 3 and decrease in SOD-1 in myocardium. Delivery of chemical HDAC inhibitor attenuated the detrimental effects of active HDAC4 on I/R injury, revealing the pivotal role of active HDAC4 in response to myocardial I/R injury.
Conclusions: Taken together, these findings are the first to define that activated HDAC4 as a crucial regulator for myocardial ischemia and reperfusion injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050730 | PMC |
http://dx.doi.org/10.1186/s10020-018-0037-2 | DOI Listing |
Genes (Basel)
November 2024
Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
Background: Histone deacetylase 4 () is a member of the class II histone deacetylase family, whose members play a crucial role in various biological processes. An in-depth investigation of the transcriptional characteristics of chicken can provide fundamental insights into its function.
Methods: We examined expression in chicken embryonic stem cells (ESC) and spermatogonial stem cells (SSC) and cloned a 444 bp fragment from upstream of the chicken transcription start site.
Sleep
January 2025
National Institute of Biological Sciences (NIBS), Beijing 102206, China.
Histone deacetylase HDAC4/5 cooperates with cAMP response element-binding protein (CREB) in the transcriptional regulation of daily sleep amount downstream of LKB1-SIK3 kinase cascade in mice. Here, we report a significant enrichment of the E-box motifs for the basic loop-helix-loop (bHLH) proteins near the CREB- and HDAC4-binding sites in the mouse genome. Adeno-associated virus (AAV)-mediated expression of class I bHLH transcription factors, such as TCF4, TCF3, or TCF12, across the mouse brain neurons reduces the duration of rapid eye movement sleep (REMS) and non-REMS (NREMS).
View Article and Find Full Text PDFInsect Biochem Mol Biol
December 2024
Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA. Electronic address:
Cell Signal
December 2024
Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China. Electronic address:
This study aimed to investigate the underlying mechanisms by which physical exercise mitigates muscle atrophy induced by Dexamethasone (Dex). A muscle atrophy model was established in the mouse C2C12 cell line and 8-week-old mice treated with Dex, with subsequent verification of phenotype and atrogene expression. The potential benefits of combined aerobic and resistance exercise in mitigating muscle atrophy were then examined.
View Article and Find Full Text PDFEpigenomics
December 2024
Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
Aims, Patients & Methods: Dietary factors may regulate the epigenome. We aimed to explore whether a diet intervention, including excess sugar, affects the methylome in human sperm, and to describe the sperm methylome. We used Whole Genome Bisulfite Sequencing (WGBS) to analyze DNA methylation in sperm taken at three time points from 15 males during a diet intervention; i) at baseline, ii) after one week on a standardized diet, and iii) after an additional week on a high-sugar diet providing 150% of their estimated total energy expenditure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!