AI Article Synopsis

  • Glasses made using vapor deposition techniques show better stability than those made by simply cooling liquids because surface particles can more easily rearrange into lower energy states.
  • Molecular dynamics simulations were used to study how particle movement changes with temperature both in the bulk of the glass and at its surface.
  • Analysis revealed that both bulk and surface particles display a mix of slow and fast movements, indicating complex, heterogeneous dynamics, with surface motions occurring significantly faster yet reflecting similar temperature dependence as bulk dynamics.

Article Abstract

Glasses prepared by vapor depositing molecules onto a properly prepared substrate can have enhanced kinetic stability when compared with glasses prepared by cooling from the liquid state. The enhanced stability is due to the high mobility of particles at the surface, which allows them to find lower energy configurations than for liquid cooled glasses. Here we use molecular dynamics simulations to examine the temperature dependence of the single particle dynamics in the bulk of the film and at the surface of the film. First, we examine the temperature dependence of the self-intermediate scattering functions for particles in the bulk and at the surface. We then examine the temperature dependence of the probability of the logarithm of single particle displacements for bulk and surface particles. Both bulk and surface particle displacements indicate populations of slow and fast particles, i.e., heterogeneous dynamics. We find that the temperature dependence of the surface dynamics mirrors the bulk despite being several orders of magnitude faster.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5039505DOI Listing

Publication Analysis

Top Keywords

temperature dependence
16
single particle
12
examine temperature
12
bulk surface
12
particle dynamics
8
glasses prepared
8
particles bulk
8
particle displacements
8
surface
7
dynamics
5

Similar Publications

Bismuth oxyselenide (BiOSe) stands as a highly promising layered semiconductor with outstanding optical, electrical, and thermal properties. For the practical application of the material toward the devices, growing BiOSe directly on the amorphous substrate at low temperatures (<400 °C) is essential; however, the negatively charged bottom Se layer originating from alternating stacks of Se and [BiO] has hindered this process. In this work, we report the method for synthesizing a BiOSe film on amorphous alumina (AlO) directly at 350 °C by using chemical solution deposition.

View Article and Find Full Text PDF

Under current climate change patterns, rapidly changing environments can impose strong selection on traits. Costly traits that require heavy investment and strongly affect fitness may be particularly vulnerable to such changes. Despite organisms experiencing dynamic environments, our knowledge of costly trait response is limited as longitudinal studies across generations are rare.

View Article and Find Full Text PDF

Methane production from anaerobic pre-treatment of municipal wastewater combined with olive mill wastewater: A demonstration study.

Water Sci Technol

January 2025

The Institute of Applied Research, The Galilee Society, Shefa-Amr 2020000, Israel; Agrobics Ltd, Shefa-Amr 2020000, Israel; Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel 2161002, Israel.

The advanced anaerobic technology (AAT), developed based on an immobilized high-rate anaerobic reactor, was applied as a pretreatment of municipal wastewater (WW) at Karmiel's treatment plant in Israel. The demonstration-scale AAT (21 m) system was operated at a flow rate of 100 mday municipal WW mixed with olive mill wastewater (OMW) (0.5 mday) to simulate the scenario of illegal discharge of agro-industrial WW.

View Article and Find Full Text PDF

The effect of growth temperature and subsequent annealing on the epitaxy of both single- and few-layer TaSe on Se-terminated GaP(111) substrates is investigated. The selective growth of the 1T and 1H phases is shown up to 1 ML according to X-ray and ultraviolet photoelectron spectroscopies. The 1H monolayer, favored at low temperatures, exhibits a very homogeneous coverage after annealing, while the 1T ML, grown at high temperatures, is characterized by a better in-plane orientation.

View Article and Find Full Text PDF

It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!