The influence of graphene oxide (GO) and polyvinyl alcohol (PVA) fiber on the mechanical performance, durability, and microstructure of cement-based materials was investigated in this study. The results revealed that compared with a control sample, the mechanical strength and durability of cement-based materials were significantly improved by adding PVA fiber and GO. The compressive and flexural strength at 28 d were increased by 30.2% and 39.3%, respectively. The chloride migration coefficient at 28 d was reduced from 7.3 × 10 m²/s to 4.3 × 10 m²/s. Under a sulfate corrosion condition for 135 d, the compressive and flexural strength still showed a 13.9% and 12.3% gain, respectively. Furthermore, from the Mercury Intrusion Porosimetry (MIP) test, with the incorporation of GO, the cumulative porosity decreased from more than 0.13 cm³/g to about 0.03 cm³/g, and the proportion of large capillary pores reduced from around 80% to 30% and that of medium capillary pores increased from approximately 20% to 50%. Scanning electron microscope (SEM) images showed a significant amount of hydration products adhering to the surface of PVA fiber in the GO and PVA fiber modified sample. The addition of GO coupling with PVA fiber in cement-based materials could promote hydration of cement, refine the microstructure, and significantly improve mechanical strength and durability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163994 | PMC |
http://dx.doi.org/10.3390/nano8090638 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China.
This study utilized deep eutectic solvents (DES) based on choline chloride/lactic acid (ChCl/LA) to deconstruct coconut fibers. The effects of DES with different temperatures and molar ratios on the yield of lignin, recovery rate of residues, structural changes in lignin and solid residues, and saccharification efficiency were investigated. The results showed that acidic DES treatment effectively deconstructed the coconut fibers, resulting in a high lignin yield of 68.
View Article and Find Full Text PDFA novel, to the best of our knowledge, optical fiber whispering-gallery mode (WGM) sensor for simultaneously measuring humidity and temperature is proposed and investigated. The proposed sensor is realized by a polyvinyl alcohol (PVA)-coated capillary tube coupling with an optical single-mode fiber (SMF), which is integrated with a fiber Bragg grating (FBG). The as-fabricated sensor can be used not only for relative humidity (RH) sensing but also for temperature detection.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Faculty of Textile Technologies and Design, Istanbul Technical University, Istanbul, Turkey. Electronic address:
Wound care presents an imposed financial burden for healthcare organizations, prompting the need for novel and cost-efficient dressings. In this study, we address this challenge by introducing a novel approach to fabricate antibacterial alginate-based fibrous materials using a combination of wet spinning and the wet-laying method, which offer advantages including structural and functional properties such as breathability, nontoxicity, biocompatibility, and cost-effectiveness. The wet spinning method was employed to develop porous and non-porous Ca-alginate fibers with diameters of 100 ± 4.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
Antimicrobial resistance poses a growing threat to public health globally. Multidrug resistant Pseudomonas (P.) aeruginosa is detected in many infected wounds and is very challenging to treat with antibiotics.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Materials Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Bangkok 10140, Thailand.
Methyl gallate (MG), a natural phenolic compound, exhibits in vitro synergistic activity with amoxicillin (Amox) against methicillin-resistant (MRSA), a global health concern. This study developed electrospun nanofibers incorporating MG and Amox into a poly(vinyl alcohol) (PVA)/chitosan (CS) blend to target both methicillin-susceptible (MSSA) and MRSA. The formulation was optimized, and the impact of acetic acid on antibacterial activity was evaluated using agar disc diffusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!