Occult hepatitis B infections (OBI) represent a reservoir of undiagnosed and untreated hepatitis B virus (HBV), hence the need to identify mutations that lead to this phenotype. Functionally characterizing these mutations by in vitro studies is time-consuming and expensive. To bridge this gap, in silico approaches, which predict the effect of amino acid (aa) variants on HBV protein function, are necessary. We developed an algorithm for determining the relevance of OBI-associated mutations using in silico approaches. A 3 kb fragment of subgenotypes A1 and D3 from 24 chronic HBV-infected (CHB) and 24 OBI participants was analyzed. To develop and validate the algorithm, the effects of 68 previously characterized occult-associated mutations were determined using three computational tools: PolyPhen2, SNAP2, and PROVEAN. The percentage of deleterious mutations (with impact on protein function) predicted were 52 (76.5%) by PolyPhen2, 55 (80.9%) by SNAP2, and 65 (95.6%) by PROVEAN. At least two tools correctly predicted 59 (86.8%) mutations as deleterious. To identify OBI-associated mutations exclusive to Botswana, study sequences were compared to CHB sequences from GenBank. Of the 43 OBI-associated mutations identified, 26 (60.5%) were predicted by at least two tools to have an impact on protein function. To our knowledge, this is the first study to use in silico approaches to determine the impact of OBI-associated mutations, thereby identifying potential candidates for functional analysis to facilitate mechanistic studies of the OBI phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162659 | PMC |
http://dx.doi.org/10.3390/genes9090420 | DOI Listing |
Biomedicines
July 2024
Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana.
(1) Background: Hepatitis B virus (HBV) sequencing data are important for monitoring HBV evolution. We aimed to molecularly characterize HBV sequences from participants with HBV surface antigen-positive (HBsAg+) serology and occult hepatitis B infection (OBI+). (2) Methods: We utilized archived plasma samples from people living with human immunodeficiency virus (PLWH) in Botswana.
View Article and Find Full Text PDFArch Virol
November 2021
Division of Digestive Diseases, University of Cincinnati College of Medicine, ML 0595, Albert Sabin Way, Cincinnati, OH, 45267-0595, USA.
J Microbiol Immunol Infect
December 2020
Center for Clinical Laboratory and Department of Immunological Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China. Electronic address:
Background/purpose: Occult HBV infection (OBI) could have serious clinical consequences in patients receiving immunosuppressive therapy. We aimed to investigate the prevalence of OBI in Chinese patients with autoimmune hepatitis (AIH) and to analyze its clinical and virological features.
Methods: 103 AIH cases were enrolled.
Occult hepatitis B infections (OBI) represent a reservoir of undiagnosed and untreated hepatitis B virus (HBV), hence the need to identify mutations that lead to this phenotype. Functionally characterizing these mutations by in vitro studies is time-consuming and expensive. To bridge this gap, in silico approaches, which predict the effect of amino acid (aa) variants on HBV protein function, are necessary.
View Article and Find Full Text PDFAntiviral Res
January 2012
Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata Rome, Italy.
Occult HBV infection (OBI) is a threat for the safety of blood-supply, and has been associated with the onset of HBV-related hepatocellular carcinoma and lymphomagenesis. Nevertheless, genetic markers in HBsAg (particularly in D-genotype, the most common in Europe) significantly associated with OBI in vivo are missing. Thus, the goal of this study is to define: (i) prevalence and clinical profile of OBI among blood-donors; (ii) HBsAg-mutations associated with OBI; (iii) their impact on HBsAg-detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!