Antibiofilm Coatings Based on PLGA and Nanostructured Cefepime-Functionalized Magnetite.

Nanomaterials (Basel)

Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest 011061, Romania.

Published: August 2018

The aim of our study was to obtain and evaluate the properties of polymeric coatings based on poly(lactic-co-glycolic) acid (PLGA) embedded with magnetite nanoparticles functionalized with commercial antimicrobial drugs. In this respect, we firstly synthesized the iron oxide particles functionalized (@) with the antibiotic Cefepime (Fe₃O₄@CEF). In terms of composition and microstructure, the as-obtained powdery sample was investigated by means of grazing incidence X-ray diffraction (GIXRD), thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM and TEM, respectively). Crystalline and nanosized particles (~5 nm mean particle size) with spherical morphology, consisting in magnetite core and coated with a uniform and reduced amount of antibiotic shell, were thus obtained. In vivo biodistribution studies revealed the obtained nanoparticles have a very low affinity for innate immune-related vital organs. Composite uniform and thin coatings based on poly(lactide-co-glycolide) (PLGA) and antibiotic-functionalized magnetite nanoparticles (PLGA/Fe₃O₄@CEF) were subsequently obtained by using the matrix assisted pulsed laser evaporation (MAPLE) technique. Relevant compositional and structural features regarding the composite coatings were obtained by performing infrared microscopy (IRM) and SEM investigations. The efficiency of the biocompatible composite coatings against biofilm development was assessed for both Gram-negative and Gram-positive pathogens. The PLGA/Fe₃O₄@CEF materials proved significant and sustained anti-biofilm activity against staphylococcal and colonisation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165491PMC
http://dx.doi.org/10.3390/nano8090633DOI Listing

Publication Analysis

Top Keywords

coatings based
12
magnetite nanoparticles
8
composite coatings
8
antibiofilm coatings
4
based plga
4
plga nanostructured
4
nanostructured cefepime-functionalized
4
magnetite
4
cefepime-functionalized magnetite
4
magnetite aim
4

Similar Publications

Photoinitiated Thiol-Ene Click Reaction for Preparation of Highly Adhesive and Mechanically Stable Silicone Coatings for Marine Antifouling and Anticorrosion.

ACS Appl Mater Interfaces

January 2025

Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.

Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments.

View Article and Find Full Text PDF

Water-soluble and biocompatible protein carbon dots (P-CDs) were simply prepared from egg white by a rapid one-step neutralization heat reaction. Unexpectedly, the thus-fabricated P-CDs could present excitation-dependent tunable fluorescence that could be quenched specifically by Fe and Fe ions with obvious color changes. A high-throughput fluorimetric platform was thereby developed by coating the P-CDs onto a capillary array for detection of total iron ions in fish blood samples, with a linear concentration range of 0.

View Article and Find Full Text PDF

Low-vibration cryogenic test facility for next generation of ground-based gravitational-wave observatories.

Rev Sci Instrum

January 2025

OzGrav-ANU, ARC Centre for Gravitational Astrophysics, College of Science, The Australian National University, Canberra ACT2601, Australia.

We present the design and commissioning of a cryogenic low-vibration test facility that measures displacement noise from a gram-scale silicon cantilever at the level of 10-16m/Hz at 1 kHz. This sensitivity is necessary for future tests of thermal noise models on cross sections of silicon suspension samples proposed for future gravitational-wave detectors. A volume of ∼36 l is enclosed by radiation shields cooling an optical test cavity that is suspended from a multi-stage pendulum chain providing isolation from acoustic and environmental noise.

View Article and Find Full Text PDF

Studies of modeling processes have provided important insights in human evolutionary discipline. Most of these studies are based on facial bones and in much lesser extent on other bones such as those from the cranial vault. Thus, this study fills a gap in research by examining occipital bone modeling in subadults, adding individuals under 2 years old and expanding the sample size available to date.

View Article and Find Full Text PDF

High-Efficiency Electrochemiluminescence Biosensor with Antifouling and Antibacterial Functions for Sensitive and Accurate Analysis of Chloramphenicol in Seawater.

Anal Chem

January 2025

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

In marine environmental monitoring, due to the presence of a large number of interfering proteins and bacteria in seawater, it is of great significance to construct an efficient sensing interface with antifouling and antibacterial functions to avoid the aforementioned interferences. On this basis, the zwitterionic hydrogel based on sulfobetaine methacrylate (SBMA) and bovine serum albumin (BSA) was developed as an antifouling and antibacterial coating. The combination of hydration of zwitterions and hydrophilicity of hydrogels endows BSA@PSBMA with good antiadsorption ability, which effectively hinders the adhesion of proteins and bacteria, thereby improving the detection sensitivity of the biosensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!