Metynnis lippincottianus is a freshwater native fish to the Guiana basin and Amazon basin and was recently introduced into the São Francisco River in Brazil. This study aimed to determine the helminths parasites of M. lippincottianus from the Três Marias Reservoir, upper São Francisco River, State of Minas Gerais, Southeast Brazil. From 67 hosts examined, 63 were parasitized by 9,257 helminths represented by five species: Dadayius sp. [prevalence (P) = 1.49%, mean abundance (MA) = 0.01]; proteocephalid plerocercoids (P = 43.28%, MA = 5.04); Procamallanus (Spirocamallanus) inopinatus (P = 29.85%, MA = 0.54); Spinitectus rodolphiheringi (P = 2.99%, MA = 0.03); Spinoxyuris sp. (P = 85.07%, MA = 132.54). These findings show that M. lippincottianus is an additional host to the helminths infecting fish native to the São Francisco River (plerocercoids, P. (S.) inopinatus and S. rodolphiheringi), and highlight the fact that Dadayius sp. and Spinoxyuris sp., which were typically found in native Metynnis spp. in other basins, also parasitizing the non-native serrasalmid M. lippincottianus in São Francisco River. These two helminth species have thrived in this freshwater ecosystem with the expansion of the geographical distribution of the host species to the São Francisco River.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/S1984-296120180040 | DOI Listing |
Arq Bras Cardiol
March 2024
Universidade Federal do Vale do Saão Francisco - Colegiado de Medicina, Paulo Afonso, BA - Brasil.
Biofabrication
April 2021
Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, United States of America.
The skin serves a substantial number of physiological purposes and is exposed to numerous biological and chemical agents owing to its large surface area and accessibility. Yet, current skin models are limited in emulating the multifaceted functions of skin tissues due to a lack of effort on the optimization of biomaterials and techniques at different skin layers for building skin frameworks. Here, we use biomaterial-based approaches and bioengineered techniques to develop a 3D skin model with layers of endothelial cell networks, dermal fibroblasts, and multilayered keratinocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!