Coordinated regulation of skeletal muscle mass and metabolic plasticity during recovery from disuse.

FASEB J

Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands.

Published: January 2019

Skeletal muscle regeneration after disuse is essential for muscle maintenance and involves the regulation of both mass- and metabolic plasticity-related processes. However, the relation between these processes during recovery from disuse remains unclear. In this study, we explored the potential interrelationship between the molecular regulation of muscle mass and oxidative metabolism during recovery from disuse. Molecular profiles were measured in biopsies from the vastus lateralis of healthy men after 1-leg cast immobilization and after 1 wk reloading, and in mouse gastrocnemius obtained before and after hindlimb suspension and during reloading (RL-1, -2, -3, -5, and -8 d). Cluster analysis of the human recovery response revealed correlations between myogenesis and autophagy markers in 2 clusters, which were distinguished by the presence of markers of early myogenesis, autophagosome formation, and mitochondrial turnover vs. markers of late myogenesis, autophagy initiation, and mitochondrial mass. In line with these findings, an early transient increase in B-cell lymphoma-2 interacting protein-3 and sequestosome-1 protein, and GABA type A receptor-associated protein like-1 protein and mRNA and a late increase in myomaker and myosin heavy chain-8 mRNA, microtubule-associated protein 1 light chain 3-II:I ratio, and FUN14 domain-containing-1 mRNA and protein were observed in mice. In summary, the regulatory profiles of protein, mitochondrial, and myonuclear turnover are correlated and temporally associated, suggesting a coordinated regulation of muscle mass- and oxidative metabolism-related processes during recovery from disuse.-Kneppers, A., Leermakers, P., Pansters, N., Backx, E., Gosker, H., van Loon, L., Schols, A., Langen, R., Verdijk, L. Coordinated regulation of skeletal muscle mass and metabolic plasticity during recovery from disuse.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201701403RRRDOI Listing

Publication Analysis

Top Keywords

recovery disuse
16
coordinated regulation
12
skeletal muscle
12
muscle mass
12
regulation skeletal
8
mass metabolic
8
metabolic plasticity
8
plasticity recovery
8
processes recovery
8
regulation muscle
8

Similar Publications

We sought to examine how resistance training (RT) status in young healthy individuals, either well resistance trained (T, n=10) or untrained (UT, n=11), affected molecular markers with leg immobilization followed by recovery RT. All participants underwent two weeks of left leg immobilization via a locking leg brace. Afterwards, all participants underwent eight weeks (3 d/week) of knee extensor focused progressive RT.

View Article and Find Full Text PDF

Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading.

View Article and Find Full Text PDF

Mechanical unloading causes bone loss, but it remains unclear whether disuse-induced changes to bone microstructure are permanent or can be recovered upon reloading. We examined bone loss and recovery in 17 astronauts using time-lapsed high-resolution peripheral quantitative computed tomography and biochemical markers to determine whether disuse-induced changes are permanent. During 6 months in microgravity, resorption was threefold higher than formation.

View Article and Find Full Text PDF

Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on an analysis of the literature regarding the effects of β-Hydroxy-β-Methylbutyrate (HMB). The following 12 points have been approved by the Research Committee of the Society: 1. HMB is a metabolite of the amino acid leucine that is naturally produced in both humans and other animals.

View Article and Find Full Text PDF

Background: Acute sarcopenia is sarcopenia lasting less than 6 months, typically following acute illness or injury. It may impact patient recovery and quality of life, advancing to chronic sarcopenia. However, its development and assessment remain poorly understood, particularly during hospitalisation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!