A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic Modification of Mesenchymal Stem Cells Overexpressing Angiotensin II Type 2 Receptor Increases Cell Migration to Injured Lung in LPS-Induced Acute Lung Injury Mice. | LitMetric

AI Article Synopsis

  • Mesenchymal stem cells (MSCs) can help improve lung function in acute lung injury (ALI), but they struggle to stay in the injured lungs long enough for effective treatment.
  • A study found that angiotensin II (Ang II) enhances MSC migration through its type 2 receptor (AT2R), leading to better retention of these cells in damaged lung tissue.
  • Mice treated with MSCs overexpressing AT2R showed improved lung health and reduced inflammation compared to those treated with MSCs lacking AT2R, suggesting that enhancing AT2R expression could be a new approach for treating ALI.

Article Abstract

Although mesenchymal stem cells (MSCs) transplantation has been shown to promote the lung respiration in acute lung injury (ALI) in vivo, its overall restorative capacity appears to be restricted mainly because of low retention in the injured lung. Angiotensin II (Ang II) are upregulated in the injured lung. Our previous study showed that Ang II increased MSCs migration via Ang II type 2 receptor (AT2R). To determine the effect of AT2R in MSCs on their cell migration after systemic injection in ALI mice, a human AT2R expressing lentiviral vector and a lentivirus vector carrying AT2R shRNA were constructed and introduced into human bone marrow MSCs. A mouse model of lipopolysaccharide-induced ALI was used to investigate the migration of AT2R-regulated MSCs and the therapeutic potential in vivo. Overexpression of AT2R dramatically increased Ang II-enhanced human bone marrow MSC migration in vitro. Moreover, MSC-AT2R accumulated in the damaged lung tissue at significantly higher levels than control MSCs 24 and 72 hours after systematic MSC transplantation in ALI mice. Furthermore, MSC-AT2R-injected ALI mice exhibited a significant reduction of pulmonary vascular permeability and improved the lung histopathology and had additional anti-inflammatory effects. In contrast, there were less lung retention in MSC-ShAT2R-injected ALI mice compared with MSC-Shcontrol after transplantation. Thus, MSC-ShAT2R-injected group exhibited a significant increase of pulmonary vascular permeability and resulted in a deteriorative lung inflammation. Our results demonstrate that overexpression of AT2R enhance the migration of MSCs in ALI mice and may provide a new therapeutic strategy for ALI. Stem Cells Translational Medicine 2018;7:721-730.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186265PMC
http://dx.doi.org/10.1002/sctm.17-0279DOI Listing

Publication Analysis

Top Keywords

ali mice
20
stem cells
12
injured lung
12
lung
10
mesenchymal stem
8
type receptor
8
cell migration
8
acute lung
8
lung injury
8
ali
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!