Synthetic Receptors for the Recognition and Discrimination of Post-Translationally Methylated Lysines.

Chembiochem

School of Pharmacy, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, UK.

Published: November 2018

Post-translational modifications (PTMs) describe the chemical alteration of proteins after their biosynthesis in ribosomes. PTMs play important roles in cell biology, including the regulation of gene expression, cell-cell interactions and the development of different diseases. A prominent class of PTMs is the side-chain methylation of lysine. For the analysis and discrimination of differently methylated lysines, antibodies are widely used, although methylated peptide and protein targets are known to be particularly difficult to differentiate by antibody-based affinity reagents; an additional challenge can be batch-to-batch reproducibility. The application of mass spectrometry techniques for methyllysine discrimination requires a complex sample preparation procedure and is not suited for working in cells. The desire to overcome the above-mentioned challenges has promoted the development of synthetic receptor molecules that recognise and bind methyllysines. Such "artificial antibodies" are of interest for a number of applications, for example, as reagents in biochemical assays, for the isolation and purification of post-translationally methylated proteins and for the tracking of signalling pathways. Moreover, they offer new approaches in diagnostics and therapy. This review delivers an overview of the broad field of methyllysine binding and covers a wide range of synthetic receptors used for the recognition of methylated lysines, including calixarenes, resorcinarenes, pillararenes, disulfide cyclophanes, cucurbiturils and acyclic receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201800398DOI Listing

Publication Analysis

Top Keywords

methylated lysines
12
synthetic receptors
8
receptors recognition
8
post-translationally methylated
8
methylated
5
recognition discrimination
4
discrimination post-translationally
4
lysines post-translational
4
post-translational modifications
4
modifications ptms
4

Similar Publications

: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM.

View Article and Find Full Text PDF

KDM4A Silencing Reverses Cisplatin Resistance in Ovarian Cancer Cells by Reducing Mitophagy via SNCA Transcriptional Inactivation.

Curr Mol Med

January 2025

Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Haishu District, Ningbo City, Zhejiang Province, 315010, China.

Background: Ovarian cancer is one of the deadliest gynecologic cancers, with chemotherapy resistance as the greatest clinical challenge. Autophagy occurrence is associated with cisplatin (DDP)-resistant ovarian cancer cells. Herein, the role and mechanism of alpha-synuclein (SNCA), the autophagy-related gene, in DDP resistance of ovarian cancer cells are explored.

View Article and Find Full Text PDF

Growing evidence shows that lysine methylation is a widespread protein post-translational modification (PTM) that regulates protein function on histone and nonhistone proteins. Numerous studies have demonstrated that the dysregulation of lysine methylation mediators contributes to cancer growth and chemotherapeutic resistance. While changes in histone methylation are well-documented with extensive analytical techniques available, there is a lack of high-throughput methods to reproducibly quantify changes in the abundances of the mediators of lysine methylation and nonhistone lysine methylation (Kme) simultaneously across multiple samples.

View Article and Find Full Text PDF

Exploring oncogenic roles and clinical significance of EZH2: focus on non-canonical activities.

Ther Adv Med Oncol

January 2025

Department of Molecular Biology of Cancer, Medical University of Lodz, Mazowiecka 6/8, Lodz 92-215, Poland.

The enhancer of zeste homolog 2 (EZH2) is a catalytic component of Polycomb repressive complex 2 (PRC2) mediating the methylation of histone 3 lysine 27 (H3K27me3) and hence the epigenetic repression of target genes, known as canonical function. Growing evidence indicates that EZH2 has non-canonical roles that are exerted as PRC2-dependent and PRC2-independent methylation of non-histone proteins, and methyltransferase-independent interactions of EZH2 with various proteins contributing to gene expression regulation and alterations in the protein stability. is frequently mutated and/or its expression is deregulated in various cancer types.

View Article and Find Full Text PDF

Context: There has been growing interest in amino acid ionic liquids because of their low-cost synthesis and superior biodegradability and biocompatibility compared to traditional ionic liquids. In this study, we have investigated the structure and dynamics of three ionic liquids consisting of N-butyl N-methyl piperidinium [Pip] cation with amino acid (lysine [Lys], histidine [His], and arginine [Arg]) anions. The radial distribution functions, the spatial distribution functions, and the coordination numbers have been used to analyze the structure in the bulk phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!