Carbon monoxide binding to Chromatium vinosum ferrocytochrome c' has been studied by high-precision equilibrium methods. In contrast to the CO binding properties of Rhodospirillum molischianum cytochrome c' [Doyle, M. L., Weber, P. C., & Gill, S. J. (1985) Biochemistry 24, 1987-1991], CO binding to C. vinosum cytochrome c' is found to be unusual in the following ways. The binding curve is found to be cooperative with typical Hill coefficients equal to 1.25. The shape of the binding curve is asymmetrical. The heat of CO ligation is measured by two independent methods, both of which yield large endothermic values of approximately 10 kcal [mol of CO(aq)]-1. The overall affinity for CO increases as the concentration of cytochrome c' decreases. These observations suggest the CO binding properties of C. vinosum cytochrome c' are complicated by CO-linked association-dissociation processes. Further investigation by gel filtration chromatography shows that at micromolar concentrations the dimeric state is tightly associated in both the reduced and oxidized forms of the cytochrome but addition of saturating concentrations of CO causes the reduced ligated dimer to dissociate largely into monomers. A model is presented that quantitatively fits the data, involving a ligand-linked dimer-monomer dissociation reaction. In this model, CO binds to the dimer form noncooperatively with an intrinsic affinity constant equal to 5600 +/- 1200 M-1 at 25 degrees C. The unligated dimer form is tightly associated, but addition of CO causes dissociation of the dimer into the monomer with a monomer-dimer association constant equal to 450 +/- 200 M-1.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00357a034DOI Listing

Publication Analysis

Top Keywords

vinosum cytochrome
12
chromatium vinosum
8
binding properties
8
binding curve
8
tightly associated
8
dimer form
8
constant equal
8
cytochrome
6
binding
6
ligand-controlled dissociation
4

Similar Publications

Unlabelled: Purple sulfur bacteria (PSB) are capable of anoxygenic photosynthesis via oxidizing reduced sulfur compounds and are considered key drivers of the sulfur cycle in a range of anoxic environments. In this study, we show that (a PSB species) is capable of autotrophic growth using pyrite as the electron and sulfur source. Comparative growth profile, substrate characterization, and transcriptomic sequencing data provided valuable insight into the molecular mechanisms underlying the bacterial utilization of pyrite and autotrophic growth.

View Article and Find Full Text PDF

The metabolic process of purple sulphur bacteria's anoxygenic photosynthesis has been primarily studied in Allochromatium vinosum, a member of the Chromatiaceae family. However, the metabolic processes of purple sulphur bacteria from the Ectothiorhodospiraceae and Halorhodospiraceae families remain unexplored. We have analysed the proteome of Halorhodospira halophila, a member of the Halorhodospiraceae family, which was cultivated with various sulphur compounds.

View Article and Find Full Text PDF

Hydrogenophilus thermoluteolus, Thermochromatium tepidum, and Allochromatium vinosum, which grow optimally at 52, 49, and 25 °C, respectively, have homologous cytochromes c' (PHCP, TTCP, and AVCP, respectively) exhibiting at least 50% amino acid sequence identity. Here, the thermal stability of the recombinant TTCP protein was first confirmed to be between those of PHCP and AVCP. Structure comparison of the 3 proteins and a mutagenesis study on TTCP revealed that hydrogen bonds and hydrophobic interactions between the heme and amino acid residues were responsible for their stability differences.

View Article and Find Full Text PDF

Ligand-Linked Association-Dissociation in Transport Proteins and Hormone Receptors.

Curr Protein Pept Sci

May 2021

Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.

Ligand-linked changes in the aggregation state of biological macromolecules occur and have importance in several physiological processes, e.g., the response of hormone receptors, cooperative ligand binding, and others.

View Article and Find Full Text PDF

Heme ligation and redox chemistry in two bacterial thiosulfate dehydrogenase (TsdA) enzymes.

J Biol Chem

November 2019

Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom

Thiosulfate dehydrogenases (TsdAs) are bidirectional bacterial di-heme enzymes that catalyze the interconversion of tetrathionate and thiosulfate at measurable rates in both directions. In contrast to our knowledge of TsdA activities, information on the redox properties in the absence of substrates is rather scant. To address this deficit, we combined magnetic CD (MCD) spectroscopy and protein film electrochemistry (PFE) in a study to resolve heme ligation and redox chemistry in two representative TsdAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!