Elimination of Myxobolus cerebralis in Placer Creek, a Native Cutthroat Trout Stream in Colorado.

J Aquat Anim Health

Colorado Parks and Wildlife, 711 Independent Avenue, Grand Junction, Colorado, 80501, USA.

Published: December 2018

AI Article Synopsis

  • Placer Creek, a Colorado tributary, experienced a decline in its native Rio Grande Cutthroat Trout population due to invasion by infected Brook Trout and the outbreak of whirling disease (WD).
  • New management strategies were implemented, including constructing barriers, eliminating existing fish populations, and introducing non-susceptible Tubifex tubifex worm species to combat the parasite.
  • By 2016, extensive testing showed no signs of M. cerebralis infection in the trout, demonstrating the success of the restoration efforts in Placer Creek.

Article Abstract

Placer Creek, a tributary of Sangre de Cristo Creek in Colorado's San Luis Valley, supported an allopatric core conservation population of native Rio Grande Cutthroat Trout Oncorhynchus clarkii virginalis during much of the 20th century. After the failure of gabion barriers in the late 1990s, Brook Trout Salvelinus fontinalis infected with Myxobolus cerebralis invaded from Sangre de Cristo Creek. By 2005, whirling disease (WD) and competition from Brook Trout reduced Rio Grande Cutthroat Trout numbers to less than 10% of the total trout population. New barriers were constructed in 2006 and the stream was treated with rotenone in 2007 and 2009 to eliminate all fish prior to the reintroduction of Rio Grande Cutthroat Trout. Results of WD research studies in Montana, California, and Colorado indicated it might be possible to break the life cycle of the parasite in some situations. Our management interventions included (1) reducing the fish population in the stream to zero for approximately 14 months, (2) introducing lineage V and VI Tubifex tubifex worms, which are not susceptible to M. cerebralis, and (3) eliminating a small off-channel pond that provided optimal habitat that sustained a localized high-density population of lineage III T. tubifex, the oligochaete host susceptible to M. cerebralis. Electrofishing during the fall of 2009 and spring of 2010 indicated the drainage was devoid of fish. Fry, juvenile, and adult Rio Grande Cutthroat Trout were stocked in September and October of 2010 and 2011. Approximately 975,000 lineage V and VI T. tubifex were introduced into Placer Creek between 2010 and 2012 as possible oligochaete competitors for the lineage III worms. The off-channel pond was filled in, and the surface was reseeded in April 2012. No evidence of M. cerebralis infection was detected among more than 280 Rio Grande Cutthroat Trout tested between July 2012 and July 2016, indicating the parasite had been eradicated from the Placer Creek basin upstream of the barriers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/aah.10039DOI Listing

Publication Analysis

Top Keywords

cutthroat trout
24
rio grande
20
grande cutthroat
20
placer creek
16
trout
9
myxobolus cerebralis
8
sangre cristo
8
cristo creek
8
brook trout
8
lineage tubifex
8

Similar Publications

Offspring of adult Yellowstone cutthroat trout (YCT) exposed to a range of selenium (Se) concentrations in situ were reared in a laboratory setting to assess effects on survival, growth and abnormalities. Maternal whole body Se concentrations ranged from 2.6 to 25.

View Article and Find Full Text PDF

Environmental DNA (eDNA) analysis has become a transformative technology, but sample collection methods lack standardization and sampling at effective frequencies requires considerable field effort. Autonomous eDNA samplers that can sample water at high frequencies offer potential solutions to these problems. We present results from four case studies using a prototype autonomous eDNA sampler as part of the U.

View Article and Find Full Text PDF

Inbreeding avoidance and cost in a small, isolated trout population.

Proc Biol Sci

November 2024

Wildlife Biology Program, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA.

The persistence of small populations is influenced by the degree and cost of inbreeding, with the degree of inbreeding depending on whether close-kin mating is passively or actively avoided. Few studies have simultaneously studied these factors. We examined inbreeding in a small, isolated population of westslope cutthroat trout using extensive genetic and demographic data.

View Article and Find Full Text PDF

Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream.

View Article and Find Full Text PDF

For almost 200 years, the taxonomy of cutthroat trout (), a salmonid native to Western North America, has been in flux as ichthyologists and fisheries biologists have tried to describe the diversity within these fishes. Starting in the 1950s, Robert Behnke reexamined the cutthroat trout and identified 14 subspecies based on morphological traits, Pleistocene events, and modern geographic ranges. His designations became instrumental in recognizing and preserving the remaining diversity of cutthroat trout.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!