Optical and electrical properties of 2D transition metal dichalcogenides (TMDCs) grown by chemical vapor deposition (CVD) are strongly determined by their microstructure. Consequently, the visualization of spatial structural variations is of paramount importance for future applications. This study demonstrates how grain boundaries, crystal orientation, and strain fields can unambiguously be identified with combined lateral force microscopy and transverse shear microscopy (TSM) for CVD-grown tungsten disulfide (WS ) monolayers, on length scales that are relevant for optoelectronic applications. Further, angle-dependent TSM measurements enable the fourth-order elastic constants of monolayer WS to be acquired experimentally. The results facilitate high-throughput and nondestructive microstructure visualization of monolayer TMDCs and insights into their elastic properties, thus providing an accessible tool to support the development of advanced optoelectronic devices based on such 2D semiconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201803748DOI Listing

Publication Analysis

Top Keywords

elastic constants
8
transition metal
8
force microscopy
8
microstructure elastic
4
constants transition
4
metal dichalcogenide
4
dichalcogenide monolayers
4
monolayers friction
4
friction shear
4
shear force
4

Similar Publications

Carbon nanomaterials, particularly carbon nanotubes (CNTs), are widely used as reinforcing fillers in rubber composites for advanced mechanical and electrical applications. However, the influence of rubber functionality and its interactions with CNTs remains underexplored. This study investigates electroactive elastomeric composites fabricated with CNTs in two common diene rubbers: natural rubber (NR) and acrylonitrile-butadiene rubber (NBR), each with distinct functionalities.

View Article and Find Full Text PDF

For those piezoelectric materials that operate under high-power conditions, the piezoelectric and dielectric properties obtained under small signal conditions cannot be directly applied to high-power transducers. There are three mainstream high-power characterization methods: the constant voltage method, the constant current method, and the transient method. In this study, we developed and verified a combined impedance method that integrated the advantages of the constant voltage and current methods, along with an improved transient method, for high-power testing of PZT-5H piezoelectric ceramics.

View Article and Find Full Text PDF

Research on Two-Layer Polymer Composites Alternatively Obtained in a Constant Magnetic Field.

Materials (Basel)

January 2025

Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland.

The aim of this research was to obtain two-layer polymer composites with favorable mechanical and functional properties. The composites consisted of one lower layer of polymer with less elastic properties, containing no admixtures, and one upper layer of polymer with more elastic properties, containing plant admixtures, in the amount of 10% by weight of either goldenrod ( L.), or of turmeric ( L.

View Article and Find Full Text PDF

A set of carrageenans produced in the potassium form and with chemical structures varying from pure iota-carrageenans to nearly pure kappa-carrageenans is submitted to ultrasonication to reduce their molecular masses Mw while maintaining a constant chemical structure and a polydispersity index around 2. The kinetics of ultrasound-induced chain scission are found to be slower for polysaccharides richer in kappa-carrageenan disaccharide units. From the elasticity of samples directly gelled in a rheometer at 1 /% in 0.

View Article and Find Full Text PDF

This prediction evaluates the different physical characteristics of magnetic materials XFeO (X = Mg, Ca and Sr) by using density functional theory (DFT). The generalized gradient approximation (GGA) approach is chosen to define the exchange and correlation potential. The structural study of the compounds XFeO (X = Mg, Ca and Sr) shows that the ferromagnetic phase is the more stable ground state, where all the parameters of the network are given at equilibrium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!