Pregnane X receptor (PXR) is a member of nuclear receptor superfamily and responsible for the detoxification of xenobiotics. Recent studies demonstrated that PXR was also expressed in the vasculature and protected the vessels from endogenous and exogenous insults, thus representing a novel gatekeeper in vascular defense. In this study, we examined the potential function of PXR in the neointimal formation following vascular injury. In the rat carotid artery after balloon injury, overexpression of a constitutively active PXR increased the intima-to-media ratio in the injured region. PXR increased cell proliferation and migration in cultured rat aortic smooth muscle cells (SMCs) by inducing the expressions of cyclins (cyclin A, D1, and E) and cyclin-dependent kinase 2. In addition, PXR increased the phosphorylation and activation of extracellular-signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK). Inactivation of ERK1/2 and p38 MAPK pathways using selective inhibitors (U0126 and SB203580) abrogated PXR-induced SMC proliferation and migration. Furthermore, cigarette smoke particles (CSP) activated PXR in SMCs. Knockdown of PXR by small interfering RNA suppressed the cell proliferation, migration, and activation of the MAPK pathways by CSP. These findings suggested a novel role for PXR in promoting SMC proliferation and migration, and neointimal hyperplasia. Therefore, PXR may be a potential therapeutic target for vascular disease related to xenobiotics such as cigarette smoking and other environmental pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.27215 | DOI Listing |
J Transl Med
January 2025
Medical School of Nanjing University, Nanjing, 210093, China.
Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.
View Article and Find Full Text PDFSci Rep
January 2025
School of Stomatology, Bengbu Medical University, No. 2600 Donghai Road, Bengbu, 233030, China.
Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.
View Article and Find Full Text PDFSci Rep
January 2025
Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
Breast cancer ranks as the second leading reason of cancer mortality among females globally, emphasizing the critical need for novel anticancer treatments. In current work, berberine-zinc oxide conjugated chitosan nanoparticles were synthesized and characterized using various characterization techniques. The cytotoxic effects of CS-ZnO-Ber NPs on MCF-7 cells were assessed using the MTT assay.
View Article and Find Full Text PDFAutoimmunity
December 2025
Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!