A contactless approach for monitoring the mechanical properties of swollen hydrogels.

Soft Matter

ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Australia.

Published: September 2018

Using a customized ultrasound setup we investigate the feasibility of using a contactless approach to study the bulk mechanical properties of swollen hydrogels. The study involved two different hydrogels, gelatin methacrylate (GelMa) and green algae extract methacrylate (GAEM), which were prepared to provide materials with varying modulus and different swelling properties. Two approaches have been developed. In the first case, ultrasound was compared to Young's modulus measured by indentation. It was found that can be linearly related to indentation modulus values only when the hydrogel swelling ratio is taken into account. In the second approach, an exponential dependency between swelled thickness and indentation modulus was found. This is representative for each hydrogel and purification method in addition to being independent of the conditions used within the toughness range explored. The results of this study indicate that a simple thickness measurement via the proposed approach can provide a direct relationship to Young's modulus upon calibration.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8sm01227jDOI Listing

Publication Analysis

Top Keywords

contactless approach
8
mechanical properties
8
properties swollen
8
swollen hydrogels
8
young's modulus
8
indentation modulus
8
modulus
5
approach monitoring
4
monitoring mechanical
4
hydrogels customized
4

Similar Publications

Stylus pen-based ambient ionization mass spectrometry for the analysis of volatiles and semivolatiles from liquid, viscous, and solid samples.

Anal Chim Acta

February 2025

Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan. Electronic address:

Background: Ambient ionization mass spectrometry (MS) has attracted significant attention due to its simplicity and ease of operation. Contactless, or field-induced, ionization is one of the ambient ionization techniques. In this approach, no direct electrical contact or additional voltage is required on the ionization-assisted substrate.

View Article and Find Full Text PDF

Day-to-day variability in sleep and activity predict the onset of a hypomanic episode in patients with bipolar disorder.

J Affect Disord

January 2025

Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Campbell Family Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.

Detecting transitions in bipolar disorder (BD) is essential for implementing early interventions. Our aim was to identify the earliest indicator(s) of the onset of a hypomanic episode in BD. We hypothesized that objective changes in sleep would be the earliest indicator of a new hypomanic or manic episode.

View Article and Find Full Text PDF

Pneumatic conveying inkjet bioprinting for the processing of living cells.

Biofabrication

January 2025

Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Str.9-11, Oldenburg, 26129, GERMANY.

Inkjet printing techniques are often used for bioprinting purposes because of their excellent printing characteristics, such as high cell viability and low apoptotic rate, contactless modus operandi, commercial availability, and low cost. However, they face some disadvantages, such as the use of bioinks of low viscosity, cell damage due to shear stress caused by drop ejection and jetting velocity, as well as a narrow range of available bioinks that still challenge the inkjet printing technology. New technological solutions are required to overcome these obstacles.

View Article and Find Full Text PDF

Continuous respiration monitoring is an important tool in assessing the patient's health and diagnosing pulmonary, cardiovascular, and sleep-related breathing disorders. Various techniques and devices, both contact and contactless, can be used to monitor respiration. Each of these techniques can provide different types of information with varying accuracy.

View Article and Find Full Text PDF

Engineering the acoustic field with a Mie scatterer for microparticle patterning.

Lab Chip

January 2025

Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.

The utilization of acoustic fields offers a contactless approach for microparticle manipulation in a miniaturized system, and plays a significant role in medicine, biology, chemistry, and engineering. Due to the acoustic radiation force arising from the scattering of the acoustic waves, small particles in the Rayleigh scattering range can be trapped, whilst their impact on the acoustic field is negligible. Manipulating larger particles in the Mie scattering regime is challenging due to the diverse scattering modes, which impacts the local acoustic field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!