Using molecular dynamics simulations we probe the structure and interactions at the water liquid-vapor (LV) interface. In the interfacial region, strong ordering of dipole moments is observed, where water molecules exhibit "frustrated" orientations. By selectively analyzing the dipolar potential of mean force between these frustrated molecules and other molecules, we find a significant enhancement of dipolar interactions across the interfacial region. This interaction is derived in terms of a component of the surface tension, with a temperature-dependent magnitude of ∼-20 mN m, representing a stabilizing interaction at the interface. This stabilization has the same magnitude, but opposite sign, to the surface tension of alkanes and short-chain alcohols. Our results highlight a mechanism by which interfacial waters recover lost free energy from an absence of van der Waals interactions in the vapor region and likely explains the driving force for specific water structure at the LV interface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.8b06464DOI Listing

Publication Analysis

Top Keywords

dipolar interactions
8
water liquid-vapor
8
liquid-vapor interface
8
interfacial region
8
surface tension
8
stabilizing dipolar
4
interactions
4
interactions drive
4
drive specific
4
specific molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!