Sugar transport systems in Kluyveromyces marxianus CCT 7735.

Antonie Van Leeuwenhoek

Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro - 35.400-000, Ouro Preto, MG, Brazil.

Published: February 2019

The pattern of glucose repression in most Kluyveromyces marxianus strains does not correlate with fermentative behaviour; however, glucose repression and fermentative metabolism appear to be linked to the kinetics of sugar uptake. In this work, we show that lactose transport in K. marxianus CCT 7735 by lactose-grown cells is mediated by a low-affinity H-sugar symporter. This system is glucose repressed and able to transport galactose with low affinity. We also observed the activity of a distinct lactose transporter in response to raffinose. Regarding glucose uptake, specificities of at least three low-affinity systems rely on the carbon source available in a given growth medium. Interestingly, it was observed only one high-affinity system is able to transport both glucose and galactose. We also showed that K. marxianus CCT 7735 regulates the expression of sugar transport systems in response to glucose availability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10482-018-1143-4DOI Listing

Publication Analysis

Top Keywords

marxianus cct
12
cct 7735
12
sugar transport
8
transport systems
8
kluyveromyces marxianus
8
glucose repression
8
glucose
6
systems kluyveromyces
4
marxianus
4
7735 pattern
4

Similar Publications

Porungo cheese whey: a new substrate to produce β-galactosidase.

An Acad Bras Cienc

November 2023

Federal University of Rio Grande do Sul, Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.

The bioconversion of porungo cheese whey to produce β-galactosidase in batch system was studied. The whey released after curd cutting and precipitation during porungo cheese production was collected in borosilicate flasks. Two strains of Kluyveromyces marxianus, CCT 4086 and CBS 6556, and whey supplementation with different nitrogen sources were evaluated.

View Article and Find Full Text PDF

Lignocellulosic biomass is an attractive raw material for the sustainable production of chemicals and materials using microbial cell factories. Most of the existing bioprocesses focus on second-generation ethanol production using genetically modified , however, this microorganism is naturally unable to consume xylose. Moreover, extensive metabolic engineering has to be carried out to achieve high production levels of industrially relevant building blocks.

View Article and Find Full Text PDF

2-phenylethanol (2-PE) is a higher aromatic alcohol with a rose-like aroma used in the cosmetic and food industries as a flavoring and displays potential for application as an antifungal. Biotechnological production of 2-PE from yeast is an interesting alternative due to the non-use of toxic compounds and the generation of few by-products. Kluyveromyces marxianus CCT 7735 is a thermotolerant strain capable of producing high 2-PE titers from L-Phenylalanine; however, like other yeast species, its growth has been strongly inhibited by this alcohol.

View Article and Find Full Text PDF

Aims: Yeasts produce 2-phenylethanol (2-PE) from sugars via de novo synthesis; however, its synthesis is limited due to feedback inhibition on the isofunctional 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthases (Aro3p and Aro4p). This work aimed to select Kluyveromyces marxianus mutant strains with improved capacity to produce 2-PE from sugars.

Methods And Results: Kluyveromyces marxianus CCT 7735 mutant strains were selected from UV irradiation coupled with screening of p-fluoro-dl-phenylalanine (PFP) tolerant strains on culture medium without l-Phe addition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!