The multi-copied genes coding for the human 18, 5.8, and 28S ribosomal RNA (rRNA) are located in five pairs of acrocentric chromosomes forming so-called rDNA. Human genome contains unmethylated, slightly methylated, and hypermethylated copies of rDNA. The major research question: What is the rDNA copy number (rDNA CN) and the content of hypermethylated rDNA as a function of age? We determined the rDNA CN in the blood leukocyte genomes of 651 subjects aged 17 to 91 years. The subjects were divided into two subgroups: "elderly" group (E-group, = 126) - individuals over 72 years of age (the age of the population's mean lifetime for Russia) and "non-elderly" group (NE-group, = 525). The hypermethylated rDNA content was determined in the 40 DNA samples from the each group. The change in rDNA during replicative cell senescence was studied for the cultured skin fibroblast lines of five subjects from NE-group. Non-radioactive quantitative dot- and blot-hybridization techniques (NQH) were applied. In the subjects from the E-group the mean rDNA CN was the same, but the range of variation was narrower compared to the NE-group: a range of 272 to 541 copies in E-group vs. 200 to 711 copies in NE-group. Unlike NE-group, the E-group genomes contained almost no hypermethylated rDNA copies. A case study of cultured skin fibroblasts from five subjects has shown that during the replicative senescence the genome lost hypermethylated rDNA copies only. In the elderly group, the mean rDNA CN is the same, but the range of variation is narrower compared with the younger subjects. During replicative senescence, the human fibroblast genome loses hypermethylated copies of rDNA. Two hypotheses were put forward: (1) individuals with either very low or very high rDNA content in their genomes do not survive till the age of the population's mean lifetime; and/or (2) during the aging, the human genome eliminates hypermethylated copies of rDNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6090032 | PMC |
http://dx.doi.org/10.3389/fgene.2018.00306 | DOI Listing |
PLoS One
January 2025
Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam.
The ribosomal genes (rDNA genes) encode 47S rRNA which accounts for up to 80% of all cellular RNA. At any given time, no more than 50% of rDNA genes are actively transcribed, and the other half is silent by forming heterochromatin structures through DNA methylation. In cancer cells, upregulation of ribosome biogenesis has been recognized as a hallmark feature, thus, the reduced methylation of rDNA promoter has been thought to support conformational changes of chromatin accessibility and the subsequent increase in rDNA transcription.
View Article and Find Full Text PDFClin Epigenetics
December 2024
Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan.
Interaction between host genotoxic changes and mucosa-associated microbiome (MAM) dysbiosis may have a role in various digestive cancers. We investigated MAM in Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC) progression sequence and its association with host genotoxic changes. 16S rRNA gene sequencing was performed in three different groups of biopsies from nonneoplastic BE from patients without cancer (N, normal group; n = 47) and with EAC (ADJ, adjacent group; n = 27).
View Article and Find Full Text PDFPLoS One
December 2024
Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America.
Epigenomics
December 2024
Third department of internal medicine, Kansai Medical University, Hirakata, Japan.
Ecotoxicol Environ Saf
November 2024
Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!