A short review of the literature on auditory event-related potentials and mismatch negativities (MMN) in cochlear implant users engaged in music-related auditory perception tasks is presented. Behavioral studies that have measured the fundamental aspects of music perception in CI users have found that they usually experience poor perception of melody, pitch, harmony as well as timbre (Limb and Roy, 2014). This is thought to occur not only because of the technological and acoustic limitations of the device, but also because of the biological alterations that usually accompany deafness. In order to improve music perception and appreciation in individuals with cochlear implants, it is essential to better understand how they perceive music. As suggested by recent studies, several different electrophysiological paradigms can be used to reliably and objectively measure normal-hearing individuals' perception of fundamental musical features. These techniques, when used with individuals with cochlear implants, might contribute to determine how their peripheral and central auditory systems analyze musical excerpts. The investigation of these cortical activations can moreover give important information on other aspects related to music appreciation, such as pleasantness and emotional perception. The studies reviewed suggest that cochlear implantation alters most fundamental musical features, including pitch, timbre, melody perception, complex rhythm, and duration (e.g., Koelsch et al., 2004b; Timm et al., 2012, 2014; Zhang et al., 2013a,b; Limb and Roy, 2014). A better understanding of how individuals with cochlear implants perform on these tasks not only makes it possible to compare their performance to that of their normal-hearing peers, but can also lead to better clinical intervention and rehabilitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6090478 | PMC |
http://dx.doi.org/10.3389/fnins.2018.00538 | DOI Listing |
JMIR Rehabil Assist Technol
December 2024
Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR) - Institut universitaire sur la réadaptation en déficience physique de Montréal (IURDPM) du Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Île-de-Montréal (CCSMTL), Université de Montréal, Institut de Réadaptation Gingras Lindsay de Montréal, 6300 avenue de Darlington, Montréal, QC, H3S 2J4, Canada, 1 514-343-6111.
Background: Stationary bikes are used in numerous rehabilitation settings, with most offering limited functionalities and types of training. Smart technologies, such as artificial intelligence and robotics, bring new possibilities to achieve rehabilitation goals. However, it is important that these technologies meet the needs of users in order to improve their adoption in current practice.
View Article and Find Full Text PDFAnn N Y Acad Sci
December 2024
Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.
What makes animal gaits so audibly rhythmic? To answer this question, we recorded the footfall sound of 19 horses and quantified the rhythmic differences in the temporal structure of three natural gaits: walk, trot, and canter. Our analyses show that each gait displays a strikingly specific rhythmic pattern and that all gaits are organized according to small-integer ratios, those found when adjacent temporal intervals are related by a mathematically simple relationship of integer numbers. Walk and trot exhibit an isochronous structure (1:1)-similar to a ticking clock-while canter is characterized by three small-integer ratios (1:1, 1:2, 2:1).
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
Aims: Previous studies suggested that structural and functional connectivity of right frontotemporal circuits associate with music perception. Emerging evidences demonstrated that structure-function coupling is important for cognition and may allow for a more sensitive investigation of brain-behavior association, while we know little about the relationship between structure-function coupling and music perception.
Methods: We collected multimodal neuroimaging data from 106 participants and measured their music perception by Montreal Battery of Evaluation of Amusia (MBEA).
J Acoust Soc Am
December 2024
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, Shanghai, 200240, China.
Subjective factors of music have been proven to significantly influence the effect of music masking, while the neural mechanism of music masking is unknown. This study aims to explore the neural mechanism by which music masking improves subjective perception of noise in the population. A total of 40 healthy subjects were recruited for both the subjective evaluation and functional near-infrared spectroscopy scanning during music masking of hospital noise.
View Article and Find Full Text PDFPLoS One
December 2024
Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.
Cochlear implantation is a well-established method for restoring hearing sensation in individuals with severe to profound hearing loss. It significantly improves verbal communication for many users, despite substantial variability in patients' reports and performance on speech perception tests and quality-of-life outcome measures. Such variability in outcome measures remains several years after implantation and could reflect difficulties in attentional regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!