To examine the residual and distributions of tetracycline antibiotics in the Weihe River, SPE-UPLC (solid phase extraction-ultra performance liquid chromatography with UV-Vis detection) was employed to analyze the oxytetracycline (OTC), chlortetracycline (CTC), and minocycline (MC) of 41 surface water and 35 sediment samples collected from main streams, tributaries, and main sewage outlets. The results showed that: (1) The order of residual levels of tetracycline antibiotics in water and sediment from high to low was the following: OTC > CTC > MC., considering the water solubilities are 313 mg/L, 630 mg/L, and 50200mg/L and octanol water partition coefficients (K) are 7.94, 4.16, and 1.12 for OTC, CTC, and MC, respectively. Thus, the distribution of antibiotics was not only related to the basic properties of antibiotics, but also some environmental factors. The concentrations of OTC in water and sediment were in the range of 1.56⁻87.89 ng/L and 6.13⁻45.38 ng/g (mean value of 16.13 ng/L and 20.60 ng/g), respectively; while CTC was 1.07⁻26.78 ng/L and 6.17⁻32.29 ng/g (mean value of 4.96 ng/L and 14.48 ng/g), respectively; and MC was 0.28⁻12.35 ng/L and 4.80⁻29.74 ng/g (mean value of 1.70 ng/L and 12.96 ng/g), respectively. There were maximum concentrations in all sewage outlets. Compared with other areas in China, tetracyclines residual in the Weihe river were at a medium level; (2) in spatial distribution, the levels of tetracyclines in water and sediment from the middle and upper reaches were higher than the lower reaches. Meanwhile, the sewage outfalls and livestock farm waste water discharge appeared to be the main sources of tetracycline antibiotics in the Weihe River; (3) ecological risk assessment revealed that in main streams and tributaries, OTC and CTC may be at a low ecological risk level; while in sewage outfalls, they may represent a medium ecological risk level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174347 | PMC |
http://dx.doi.org/10.3390/ijerph15091803 | DOI Listing |
Rural Remote Health
January 2025
Rural Clinical School Western Australia, University of Western Australia, UWA Science Building, Albany, WA 6330, Australia.
Introduction: The geographic, cultural, social and economic milieu that impacts mental health in rural communities globally has been well documented. However, few studies have addressed how rural ecosystems impact specifically upon the mental health and wellbeing of young people. Furthermore, the limited explorations of factors contributing to poorer mental health outcomes in rural youth have primarily included adult voices.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China. Electronic address:
As the ozone (O) pollution becomes severe in China, it poses a threat to human health. Currently, studies on the impacts of O on different regions and groups are limited. This review systematically summarizes the relationship between O pollution and mortality and morbidity across the nation, regions, and cities in China, with a focus on the regional and group-specific studies.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department F.-A. Forel for Environmental and Aquatic Sciences, Section Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland. Electronic address:
Silver nanoparticles (AgNPs) are increasingly used in various consumer products and industrial applications, raising concerns about their environmental impact on aquatic ecosystems. This study investigated the physicochemical stability, trophic transfer, and toxic effects of citrate-coated AgNPs in a freshwater food chain including the diatom Cyclotella meneghiniana and the gastropod Lymnaea stagnalis. AgNPs remained stable in the exposure medium, with a minimal dissolution (<0.
View Article and Find Full Text PDFFront Microbiol
December 2024
Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Jimma University, Jimma, Oromia, Ethiopia.
Background: Pharmaceuticals are expected to improve human and animal health, but improper management and regulation have led to adverse effects such as reproductive disorders, antibiotic resistance, and biodiversity loss in ecosystems. Their presence in the environment poses significant risks, including a reduction in biodiversity, reproductive issues, and the development of antimicrobial resistance. This review aims to examine the occurrence and sources of pharmaceuticals in the environment and their ecotoxicological and regulatory aspects, with a focus on Ethiopia.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
Microplastic (MP) contamination poses significant risks to ecosystems and human health. However, the absence of standardized protocols, detailed polymer identification, and sources identification hinders the development of targeted mitigation strategies, particularly in developing nations. There is a scarcity of comprehensive data on MP distribution, sources, and transport mechanisms in freshwater environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!