A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor. | LitMetric

The relaxin-3 neuropeptide activates the relaxin family peptide 3 (RXFP3) receptor to modulate stress, appetite, and cognition. RXFP3 shows promise as a target for treating neurological disorders, but realization of its clinical potential requires development of smaller RXFP3-specific drugs that can penetrate the blood-brain barrier. Designing such drugs is challenging and requires structural knowledge of agonist- and antagonist-binding modes. Here, we used structure-activity data for relaxin-3 and a peptide RXFP3 antagonist termed R3 B1-22R to guide receptor mutagenesis and develop models of their binding modes. RXFP3 residues were alanine-substituted individually and in combination and tested in cell-based binding and functional assays to refine models of agonist and antagonist binding to active- and inactive-state homology models of RXFP3, respectively. These models suggested that both agonists and antagonists interact with RXFP3 via similar residues in their B-chain central helix. The models further suggested that the B-chain Trp inserts into the binding pocket of RXFP3 and interacts with Trp and Lys, the latter through a salt bridge with the C-terminal carboxyl group of Trp in relaxin-3. R3 B1-22R, which does not contain Trp, used a non-native Arg residue to form cation-π and salt-bridge interactions with Trp and Glu in RXFP3, explaining a key contribution of Arg to affinity. Overall, relaxin-3 and R3 B1-22R appear to share similar binding residues but may differ in binding modes, leading to active and inactive RXFP3 conformational states, respectively. These mechanistic insights may assist structure-based drug design of smaller relaxin-3 mimetics to manage neurological disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187618PMC
http://dx.doi.org/10.1074/jbc.RA118.002645DOI Listing

Publication Analysis

Top Keywords

peptide rxfp3
12
rxfp3
10
agonist antagonist
8
relaxin family
8
family peptide
8
rxfp3 receptor
8
neurological disorders
8
binding modes
8
rxfp3 residues
8
models suggested
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!